A Study on the Torsional Vibration Characteristics of Super Large Two Stroke Low Speed Engines with Tuning Damper

  • Barro Ronald D (Mokpo National Maritime University Graduate School-Department of Marine Engineering) ;
  • Kim Sang-Hwan (Mokpo National Maritime University Graduate School-Department of Marine Engineering) ;
  • Lee Don-Chool (Mokpo National Maritime University)
  • Published : 2006.11.16

Abstract

Ship builder's requirement for a higher power output rating has lead to the development of super large two stroke low speed diesel engines. Usually a large-sized bore ranging from 8-14 cylinders, this engine group is capable of delivering power output of more than 100,000 bhp at maximum continuous rating. Other positive aspects of this engine type include higher thermal efficiency, reliability, durability and mobility. This all playa vital role in meeting the propulsion requirement of vessels, specifically for large container ships, of which speed is a primary concern to become more competitive. Consequently, this also resulted in the modification of engine parameters and new component designs to meet the consequential higher mean effective pressure and higher maximum combustion pressure. Even though the fundamental excitation mechanism unchanged, torsional vibration stresses in the propulsion shafting are subsequently perceived to be higher. As such, one important viewpoint in the initial engine design is the resulting vibration characteristic expected to prevail on the propulsion shafting system(PSS). This paper investigated the torsional vibration characteristics of these super large engines. For the two node torsional vibration with a nodal point on the crankshaft, a tuning damper is necessary to reduce the torsional stresses on the crankshaft. Hence, the tuning torsional vibration damper design and compatibility to the shafting system was similarly reviewed and analyzed.

Keywords