• Title/Summary/Keyword: Propulsion control

Search Result 1,023, Processing Time 0.027 seconds

A study on the Development of an electronic control unit using digital sensors for propulsion systems (디지털센서를 이용한 추진 시스템 전자 제어장치 연구)

  • Son, Jong-Dae;Kim, Jung-Hoe;Lee, Jae-Yun;Kim, Tae-Wan;Yoon, Soo-Hee;Lee, Yong-Hwan;Kwak, Geunn-Yeong;Chung, Soon-Bae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.167-169
    • /
    • 2010
  • Electronic control units for propulsion systems are devices which compute control algorithm by processing the systems' internal sensor signals. Due to the effect of transmission between sensors and a control unit, previous analog systems have drawbacks of signal attenuation and susceptibility to noises. However, a digital sensor can be less influenced by the electrical cable line as it includes sensor, AMP, and AD converter in one module. In addition, it can reduce the process time for control algorithm because extra S/W filtering process is not needed. The current study shows how to process signals for an electronic control unit using digital sensors.

  • PDF

Design and Characteristic Analysis of Hybrid-Type Levitation and Propulsion Device for High-Speed Maglev Vehicle (초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템의 설계 및 특성해석)

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min;Kim, Bong-Sup;Kim, Dong-Sung;Lee, Young-Sin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.715-721
    • /
    • 2010
  • This paper deals with the design and characteristic analysis of electro-magnet/permanent-magnet (EM-PM) hybrid levitation and propulsion device for high-speed magnetically levitated (maglev) vehicle. The machine requires PMs with high coercive force in order to levitate the vehicle by only PMs, and propulsion force is supplied by long-stator linear synchronous motor (LSM). The advantages of this configuration are an increasing levitation airgap length and decreasing total weight of the vehicle, because of the zero-power levitation control. Several design considerations such as machine structure, manufacturing, and control strategy are described. Moreover, the levitation and propulsion device for high-speed maglev vehicle has been designed and analyzed usign the electromagnetic circuit and FE analysis. In order to verify the design scheme and feasibility of maglev application, 3-DOF static force test set is implemented and tested. The obtained experimental data using the static tester shows the validity of the design and analysis approaches.

Design of Adaptive Neural Tracking Controller for Pod Propulsion Unmanned Vessel Subject to Unknown Dynamics

  • Mu, Dong-Dong;Wang, Guo-Feng;Fan, Yun-Sheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2365-2377
    • /
    • 2017
  • This paper addresses two interrelated problems concerning the tracking control of pod propulsion unmanned surface vessel (USV), namely, the modeling of pod propulsion USV, and tracking controller design. First, based on MMG modeling theory, the model of pod propulsion USV is derived. Furthermore, a practical adaptive neural tracking controller is proposed by backstepping technique, neural network approximation and adaptive method. Meanwhile, unlike some existing tracking methods for surface vessel whose control algorithms suffer from "explosion of complexity", a novel neural shunting model is introduced to solve the problem. Using a Lyapunov functional, it is proven that all error signals in the system are uniformly ultimately bounded. The advantages of the paper are that first, the underactuated characteristic of pod propulsion USV is proved; second, the neural shunting model is used to solve the problem of "explosion of complexity", and this is a combination of knowledge in the field of biology and engineering; third, the developed controller is able to capture the uncertainties without the exact information of hydrodynamic damping structure and the sea disturbances. Numerical examples have been given to illustrate the performance and effectiveness of the proposed scheme.

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF

A Study for the development of a propulsion and control system about Korean High Speed Train (한국형 고속전철의 추진 및 제어 시스템 개발에 관한 연구)

  • 임성근;전성현;김현철;박광복
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.476-488
    • /
    • 1998
  • The study was carried out about the development of the propulsion and the control systems toy Korean High Speed Train. The propulsion system was studied to run the maximum operating speed of 350km/h. The capacity of the main equipments is decided for the train to run the maximum operating speed of 350km/h with one Ike of 2 power cars, 4 motorized trailers and 14 intermediate trailers. The control system was studied to two parts the supply and the control of high and low voltages used at train. The performance study of control system would be continued for interface with other systems.

  • PDF

Robust Pressure Control of Variable Thrust Solid Propulsion System with Nonlinear Disturbance Observer (비선형 외란관측기를 이용한 가변추력 고체추진기관의 강인 압력제어)

  • Kang, Dae-Gyeom
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.59-64
    • /
    • 2021
  • In this paper, a mathematical pressure dynamics model for a variable thrust solid propulsion system with an electric actuator was derived from the mass conservation of gas. To solve the problem induced by modeling uncertainties in the propellant model and the dead zone of the actuator, a nonlinear pressure controller combined with a nonlinear disturbance observer was designed using a mathematical model of the system. The simulation results showed that the proposed pressure controller could reduce tracking errors compared to another conventional nonlinear controller even in situations where input disturbances were present.

In-Space Performance of "KAGUYA" Lunar Explorer Propulsion Subsystem

  • Masuda, Ideo;Goto, Daisuke;Kagawa, Hideshi;Kajiwara, Kenichi;Sasaki, Takeshi;Tamura, Masayuki;Takahashi, Mamoru;Kasuga, Kazuhito;Ikeda, Mizuho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.407-412
    • /
    • 2008
  • "KAGUYA"(SELENE) is a Japanese Lunar Explorer launched by H-IIA rocket from Tanegashima Space Center on 14 September 2007. The dual-mode bipropellant propulsion subsystem of KAGUYA includes two fuel tanks, an oxidizer tank, propellant and pressurant control components, twelve monopropellant 20N thrusters, eight monopropellant 1N thrusters, and a bipropellant 500N Orbit Maneuver Engine(OME). Once the KAGUYA separated from the rocket, it circled the Earth twice and traveled to the Moon, where it entered lunar orbit. All maneuvers were performed through multiple 500N OME/20N thruster firings. This paper describes the in-space performance of KAGUYA Lunar Explorer bipropellant propulsion subsystem.

  • PDF

A Propulsion Device Control using Communication Networks (통신망을 이용한 추진장치의 제어)

  • 이현두;정만규;고영철;방이석
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.270-273
    • /
    • 1999
  • This paper describes the characteristics of two methods about providing information needed for propulsion device control in train. The one is to use new way using the communication network for transmission of control information, the other is traditional way using hardwire connection. And this paper describes the communication interface technique between TCMS(Train Control and Monitoring System) and VVVF inverter system with LonWorks network adapted to SMG line 6 which has been developed. With this technique, an inertia load test carried out for the traction control environment and it is expecting a field test at SMG line 6.

  • PDF

A Study on The Synchronous Control of Dual Electric Propulsion System Based on the Coupling Structure (커플링구조에 기초한 전기추진시스템의 동기제어에 관한 연구)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, the synchronous control system is designed to restrain the speed difference generated between two propellers, namely, synchronous error in a dual electric propulsion system of unmanned surface vehicle, fish finder boat, etc. The control system based on coupling structure is composed of pre-filters and speed controllers for each propulsion system and a synchronous controller cross-coupled between two propulsion systems. The pre-filter and speed controller are designed in order that the propulsion system may follow the speed reference without overshoot and input saturation. And the synchronous controller is designed in consideration of damping and quickness of the synchronous controller system after analyzing effect of the skew disturbance and mismatched dynamic characteristics on synchronous error. Finally, the simulation results show that the designed control system is effective for elimination of synchronous error.

Development of CODOG Propulsion System Simulator (CODOG 함정 추진체계 시뮬레이터 개발)

  • Jang, Jae-hee;Shin, Seung-woo;Kim, Min-gon;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1808-1817
    • /
    • 2017
  • Duties required for naval ship such as anti-submarine, anti-ship, and supply, etc are diversified, so the ECS (Enfineering Control System) is required for executing the mission effectively. The ECS monitors and controls the propulsion system in order that naval ship can perform the mission. As the in-country development of ECS is progressed, a test system for ECS is needed, and a naval ship propulsion system simulator based on CODOG was developed on this study. The naval ship propulsion system simulator based on CODOG which is divided into gas turbine model, diesel engine model, reduction gear model and controllable pitch propeller model, simulates to feedback of control commands of ECS. As a result of the experiment, it is able to confirm speed, torque and power, etc. of the gas turbine, diesel engine and shaft according to ECS propulsion mode.