• Title/Summary/Keyword: Proprioceptive sense

Search Result 53, Processing Time 0.031 seconds

The Adverse Effect of Proprioceptive Sense in Head-Neck according to Smartphone Usage

  • Son, Sung Min
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.2
    • /
    • pp.54-57
    • /
    • 2018
  • Purpose: Most studies have reported pain in the head-neck and upper-limbs according to smartphone usage, which is related to the proprioception sense in the head and neck, but there have been few studies. Therefore, the aim of this study was identify the adverse effects of the proprioceptive sense in the head-neck according to smartphone usage. Methods: Twenty-seven young adults (male: 9, female: 18) were enrolled in this study. The proprioceptive sense was measured through the joint reposition sense error and neural positon error in the head-neck during smartphone usage for 0, 5, and 20 minutes. The Noraxon MyoMotion system was used to record the joint position angle and neutral positon in the head-neck. One-way repeated ANOVA was used to identify the differences between the three smartphone use durations and the least-squares difference was used as a post hoc test. The data were analyzed using SPSS 18.0 software. Results: The joint reposition sense error and neural positon error in the head-neck were significantly different among the 0, 5, and 20 minutes of smartphone usage (p<0.05). In the post hoc test, the joint reposition sense error and neural positon error showed a significant difference between smartphone use for 0 minute and 5 minute, and between smartphone use for 0 minute and 20 minutes. Conclusion: This study suggests that smartphone use within 5 minutes can have adverse effects on the proprioceptive sense. Therefore, it is necessary to consider the appropriate use time and break time when using smart phones.

The Effect of Proprioceptive Exercise on Knee Active Articular Position Sense Using Biodex System 3pro®

  • Park, Jae-Yong;Lee, Jung-Chul;Bae, Jong-Jin;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.170-173
    • /
    • 2014
  • In order to assess the impact of proprioceptive exercises on the position sense ability of the knee joint, we conducted an analysis using Biodex System $3pro^{(R)}$, targeting 42 ordinary people (male=22, female=20). After applying proprioceptive exercise, we measured changes in balance and flexibility, and active articular position sense (AAPS), depending on gender. To find out the change in each measurement item variable, we carried out dependent t-tests. The statistical significance level was set to 0.05. The research showed that after applying the proprioceptive exercise, AAPS was significantly improved for both men and women (p<.01). In the case of women, the flexibility was significantly improved (p<.01). Also, the balance was significantly improved for both men and women (p<.01). Therefore, the proprioceptive exercise program is considered to be very useful in improving muscle and joint function, and preventing injuries. Thus, continuous clinical studies using Biodex system $3pro^{(R)}$ are required for a variety of scientific evaluations of proprioceptive skills.

Does the Addition of Upper Thoracic Manipulation to Proprioceptive Training Improve Cervicocephalic Joint Position Sense and Forward Head Posture in Asymptomatic College Students?

  • Battal, Grace;Ali, Nibal;Chamoun, Rima;Hanna-Boutros, Berthe
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.2
    • /
    • pp.2345-2353
    • /
    • 2021
  • Background: This study evaluated the effectiveness of upper thoracic manipulation (UTM) and proprioceptive training versus proprioceptive training alone on forward head posture (FHP) and cervicocephalic joint position sense (CJPS) in asymptomatic university students during a short interval of time. Objectives: To evaluate whether the suggested combination would provide greater benefit, and be superior to proprioceptive training alone in improving proprioceptive acuity and head posture. Design: A single-blind randomized controlled trial. Methods: Thirty-three university student volunteers with asymptomatic FHP were recruited. Subjects were randomly assigned to a manipulation group (n=16) receiving UTM combined with proprioceptive training or a proprioception group (n=17) receiving proprioceptive training only. The intervention period lasted 5 weeks in total, and consisted of one 15 to 20-minute session per week. FHP and CJPS were assessed before and after the intervention. Results: A significant pre- to post-intervention decrease in FHP and joint position error was identified in both groups (P<.05). Subjects in the manipulation group demonstrated greater improvements in CJPS and head posture compared to the proprioception group (P<.05). Conclusion: These findings support employing either intervention for treating asymptomatic students with FHP. However, the addition of UTM to proprioceptive training was more effective than proprioceptive training alone in reducing joint position errors and improving head posture.

The Effects of Skeletal Muscle Mass and Muscle Fatigue on the Proprioceptive Position Sense of the Knee Joint (뼈대근육량과 근피로가 무릎관절 고유수용성 위치감각에 미치는 영향)

  • Park, Sookyoung;Park, Kanghui
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.2
    • /
    • pp.139-147
    • /
    • 2020
  • Purpose : Proprioceptive position sense plays a key role in providing joint stability, and multiple factors are related to proprioceptive position sense. Thus, this study aimed to determine the effects of body composition, particularly skeletal muscle mass on proprioceptive position sense following muscle fatigue. Methods : Healthy female subjects agreed to have their body composition analyzed. Only subjects who had 18.5-22.9 kg/㎡ of BMI (body mass index) were included in this study, and the participants were divided into two groups by skeletal muscle mass level. The experimental group had a level of skeletal muscle lower than the standard level (n=9), while the control group showed a standard or high level of skeletal muscle mass (n=11). To determine the change in proprioceptive position sense of the knee joint, the absolute angle error (AAE) was evaluated following muscle fatigue on low extremity. The muscle fatigue was induced by isokinetic resistance exercise program of Biodex system. AAE was measured by the Biodex system and compared the result before and after muscle fatigue. Results : The experimental group showed a significant AAE difference between before (3.16±2.48 °) and after (5.40±2.61 °) muscle fatigue. In addition, there was a AAE difference between the experimental (5.40±2.61 °) and control groups (3.53±1.67 °) after fatigue; however, there was no significance. Those results indicated that low level of skeletal muscle mass might influence the proprioceptive position sense of the knee joint after muscle fatigue. Conclusion : Thus, maintaining the proper level of skeletal muscle mass is pivotal to reduce the risk of injury following muscle fatigue in ADL or sport activities.

Immediate Effect of Calf Muscle Kinesio Taping on Ankle Joint Reposition Sense and Force Sense in Healthy Elderly

  • Han, Jin-Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.4
    • /
    • pp.193-197
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the immediate effects of calf muscle Kinesio taping on ankle joint reposition sense (JRS) and force sense (FS) in healthy elderly. Methods: Thirteen healthy elderly subjects were participated in this study. The error of ankle JRS and FS was evaluated by 3D motion capture device and digital dynamometer depending on three different taping conditions (Kinesio taping, sham taping, and no taping) respectively. All of subjects were asked to perform a proprioceptive task of ankle JRS and FS. One-way repeated ANOVA test was used to compare the error of JRS and FS depending on three different taping conditions. Results: With Kinesio taping over calf muscle, ankle joint reposition sense error and force sense error significantly decreased, if compared with a sham taping or no taping condition. Conclusion: To apply Kinesio taping over calf muscle could enhance ankle proprioceptive sense in the elderly people.

The Effect of Proprioceptive Position Sense by Lumbar Flexors and Extensors

  • Park, Ji-Won;Ko, Yu-Min;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.6
    • /
    • pp.414-418
    • /
    • 2012
  • Purpose: Muscle fatigue affects proprioception, and it causes problems in spinal stability. The purpose of this study was to examine the effect on the accuracy of reproducing the lumbar angles before lumbar exercise and after fatiguing isokinetic lumbar exercise. Methods: Thirty healthy adults participated in this study. Before induction of fatigue by exercise, the proprioception was measured by Biodex. Lumbar positions were passively maintained on stimulation position ($25^{\circ}$ flexion and $25^{\circ}$ extension), and back to the starting position. Subjects actively repositioned the remembered stimulation position, and error degrees between the stimulation position and reposition were measured. Using an isokinetic device at $120^{\circ}$/sec of velocity of angle lumbar flexion/extension exercise resulted in muscle fatigue. The post-fatigue proprioceptive position sense was used in the same way as in pre-fatigue measurement. Results: Means of position sense of pre-fatigue were $2.19{\pm}1.97$ on flexion angle, and $5.04{\pm}2.84$ on extension angle. After exercise induced fatigue, means of position sense were $2.37{\pm}1.83$ on flexion angle, and $4.93{\pm}2.57$ on extension angle. Results of this study showed significant differences of lumbar proprioceptive position sense between pre- and post-fatigue. Conclusion: Lumbar proprioception sense in active repositioning in flexion and extension was affected in the presence of muscle fatigue. Therefore, it should be noted that therapeutic exercise for patients with abnormal proprioceptive sense or elderly people must be performed with care because muscle fatigue can cause secondary damage.

Does Plantar-Flexor Muscle Fatigue Degrade Proprioceptive Sense at the Ankle Joint? (발바닥굽힘근 근피로가 발목관절 고유수용성 감각을 감소시키는가?)

  • Han, Jin-Tae
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.463-469
    • /
    • 2019
  • Purpose: This study investigated the effect of plantar-flexor muscle fatigue on the force sense and joint reposition sense of ankle joints in the healthy adults. Methods: Fifteen healthy subjects (male: 9, female: 6) participated in this study. A digital dynamometer was used to measure the force sense error while a wireless motion capture device was used to measure the joint reposition sense error. To induce plantar-flexor muscle fatigue for a dominant lower extremity, the subjects were asked to perform plantar flexion until exhaustion while barefoot. The differences in force sense error and joint reposition sense error for the ankle joint were measured immediately. The Wilcoxon test was used to compare these values before and after inducing plantar-flexor muscle fatigue. Results: The force sense error and joint reposition sense error of ankle joints after inducing plantar-flexor muscle fatigue increased significantly compared to the values before inducing muscle fatigue. Conclusion: This study suggests that plantar-flexor muscle fatigue could degrade the force sense and joint reposition sense in ankle joints. In addition, it could deteriorate ankle proprioception.

The effects of proprioceptive exercises on balance ability after stroke (고유수용성 감각 증진 운동이 뇌졸중 환자의 균형 능력에 미치는 영향)

  • Song, Hyun-Seung;Park, Hye-Ryoung;Bae, Si-Jeol;Park, Ji-Seong;Cho, Hyeung-Tae;Jang, Ha-Hee;Kim, Su-Jin
    • PNF and Movement
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate the effects of proprioceptive exercise (PE) using a trampoline and a balance board on a balance ability after stroke. Method : Sixteen chronic stroke patients participated. Participants were randomly assigned to the PE group or control group (8 experimental, 8 control). All of participants were in-patients at local rehabilitation centre and had been receiving a traditional rehabilitation program, five days a week. The PE group have additionally undergone for four weeks, three days a week, the PE using a trampoline and a balance board under supervision by a physical therapist but control group was not received any additional program except the traditional rehabilitation program. The position sense test used to assess a proprioceptive sense at a knee joint. The Berg Balance Scale (BBS) and the Timed Up & Go (TUG) test to measure the balance ability were carried out before and after the training. Result : After the training the error of position sense at knee joint of PE group significantly decreased compared to the control group. The PE group demonstrated a significant improvement in the scores of the BBS and TUG. Conclusion : The present study suggests that the PE program using a trampoline and balance board may become a useful tool for enhancing a balance ability in chronic stroke patients through the ennced proprioceptive position senses.

  • PDF

A Comparative Study of the Effects of Proprioceptive Neuromuscular Facilitation and Taping Interventions on Balance Ability, Joint Position Sense, and Ankle Joint Strength (발목관절 근력과 관절위치감각, 그리고 균형능력에 미치는 고유수용성 신경근 촉진법 중재와 테이핑 중재 비교연구)

  • Kim, Jwa-jun;Park, Se-Yeon
    • PNF and Movement
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Purpose: The aim of the present study was to investigate the effects of proprioceptive neuromuscular facilitation (PNF) and taping interventions on balance ability, joint position sense, and ankle joint strength. Methods: Thirty subjects who had experienced an ankle sprain within the previous 3 months participated in this study. The subjects were randomly assigned to a PNF group (n=15) or a taping group (n=15). Before and after the interventions, ankle dorsi-flexion and plantar-flexion strength, joint position error, and total center of pressure movements in one leg while in a standing position were measured. Results: Regardless of the group allocation, ankle dorsi-flexion and plantar-flexion strength significantly improved after the interventions (p<0.05). Compared to preintervention measurements, joint position errors were significantly reduced postintervention (p<0.05). The PNF intervention significantly decreased the total lateral movement of the center of pressure in the one leg standing condition (p<0.05). Conclusion: Both PNF and taping interventions improved joint position sense and ankle joint strength. In common with the findings of a previous study, the PNF intervention improved balance ability. Further study is required to investigate the effects of various PNF and taping interventions on ankle performance in subjects with chronic ankle sprains.

Proprioception, the regulator of motor function

  • Moon, Kyeong Min;Kim, Jimin;Seong, Yurim;Suh, Byung-Chang;Kang, KyeongJin;Choe, Han Kyoung;Kim, Kyuhyung
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.393-402
    • /
    • 2021
  • In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.