• Title/Summary/Keyword: Proportional-differential control

Search Result 56, Processing Time 0.031 seconds

A Design of SRM Controller using Microprocessor

  • Park, Joon-Hoon;Ahn, Jung-Soo;Han, Wun-Dong;Park, Boo-Chong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2023-2026
    • /
    • 2002
  • This paper explains the study of controller design applied to SRM(Switched Reluctance Motor) concept. This controller executes controller algorithms via ${\mu}$-processor to increase stability and precise measurement, and VHDL (Very high speed integrated circuit Hardware Description Language) is designed to generate SRM driving signal. During initial period, SRM controller was designed to control .respective target RPM (Revolution per minutes) and PR (Proportional Integral Differential) coming from the PC(Personal Computer) monitor program, and receiving clockwise and counter-clockwise rotation signal and target RPM coming from the front panel, and receiving the location of rotational element and RPM generating from the position censor during activation period.

  • PDF

A study on the spectrum assignment problem for a functional linear system (함수선형계의 스펙트럼지정문제에 관한 연구)

  • 이장우
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.209-217
    • /
    • 1982
  • This paper considers a finite spectrum assignment Problem for a functional retarded linear differential system with delays in control only. In this problem, by generalizing from an abstract linear system characterized by Semigroups on a Hilbert space to a finite dimensional linear system, we unify the relationship between a control-delayed system and its non-delayed system, and then by using the spectrum of the generator-decomposition of Semigroup, we try to get a feedback law which yields a finite spectrum of the closed-loop system, located at an arbitrarily preassigned sets of n points in the complex plane. The comparative examinations between the standard spectrum assignment method and the method of spectral projection for the feedback law which consists of proportional and finite interval terms over present and past values of control variables are also considered. The analysis is carry down to the elementary spectral projection level because, in spite of all the research efforts, so far there has been no significant attempt to obtain the feedback implementation directly from the abstract representation forms in the case of multivariables.

  • PDF

DYNAMIC ANALYSIS OF A PERIODICALLY FORCED HOLLING-TYPE II TWO-PREY ONE-PREDATOR SYSTEM WITH IMPULSIVE CONTROL STRATEGIES

  • Kim, Hye-Kyung;Baek, Hun-Ki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.225-247
    • /
    • 2010
  • In this paper, we establish a two-competitive-prey and one-predator Holling type II system by introducing a proportional periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for the predator at different fixed time. We show the boundedness of the system and find conditions for the local and global stabilities of two-prey-free periodic solutions by using Floquet theory for the impulsive differential equation, small amplitude perturbation skills and comparison techniques. Also, we prove that the system is permanent under some conditions and give sufficient conditions under which one of the two preys is extinct and the remaining two species are permanent. In addition, we take account of the system with seasonality as a periodic forcing term in the intrinsic growth rate of prey population and then find conditions for the stability of the two-prey-free periodic solutions and for the permanence of this system. We discuss the complex dynamical aspects of these systems via bifurcation diagrams.

Design of hybrid-type fuzzy controller for stabilizing molten steel level in high speed continuous casting (연주 탕면레벨 안정화를 위한 하이브리드형 퍼지제어기 설계)

  • 이덕만;권영섭;이상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.67-67
    • /
    • 2000
  • In this paper, a hybrid type fuzzy controller is proposed to maintain molten steel level stable and reliable manner in high speed continuous casting regardless of various disturbances such as casting speed change, tundish weight variation, 치ogging/undoning of SEN(Submerged Entry Nozzle), periodic bulgings, etc. To accomplish this purpose, hardware filter and software filer are carefully designed to eliminate high frequency noise and to smooth input signals from harsh environments. In order to minimize the molten steel level variations from various disturbances the controller uses hybrid type control term: fuzzy logic term, proportional term, differential term and nonlinear feedback compensation tenn. The proposed controller is applied tn commercial mini-mill plant and shows considerable improvement in minimizing the molten steel variation.

  • PDF

A Study on the Design and Manufacturing of the Blind System with Auto-controlled Illuminance (자동 조도 조절 블라인드 시스템 설계 및 제작에 대한 연구)

  • Jang, Chong Min;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.615-621
    • /
    • 2013
  • A blind system for window glass has been designed and manufactured as a CapStone Design project at Seoul National University of Science and Technology. This system automatically controls the interior illuminance to maintain a uniform temperature. The aim of this project was to support an air conditioning system and heating equipment to maintain a good indoor environment. Proportional integral differential (PID) control using cadmium sulfide (CdS) sensors was applied to control it. Polaroid film was attached to the new blind system to reflect sunlight. It was found that the system had the potential to reduce energy consumption and may be used with a building energy management system (BEMS).

A Study on Measurement and Automation Method of Cylinder Head Swirl (실린더 헤드 스월 측정 및 자동화 방법에 관한 연구)

  • Lee Choong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.92-99
    • /
    • 2006
  • The swirl ratio of a charge in the cylinder was estimated by calculating the ratio of the rotary speed of charge which could be simulated from the rotary speed of paddle in the swirl measurement apparatus, to the engine speed which could be calculated by measuring intake air flow rate. The automation of the swirl ratio measurement for cylinder head was achieved by controling both valve lift in cylinder head and a suction pressure of surge tank using two step-motors. The number of measurement position for calculating mean swirl ratio was varied by adjusting the interval of valve lift. The mean swirl ratio with varying the number of measurement position showed nearly constant value. Two measurement methods for measuring the swirl ratio were compared, one was to control the suction pressure of the surge tank with PID (proportional, integral, differential) mode with by-pass valve controlled by the step motor and the other did not control the surge tank pressure by fixing the by-pass valve. The difference of the mean swirl ratio between the two measurement methods showed nearly constant value with varying the number of measurement position. This means that the w/o PID control method could be preferred to the PID control method which has been used, due to the simpleness of the swirl measurement.

Implementation of the robust speed control system for DC servo motor using TDF compensator method (2자유도 보상법에 의한 직류서보전동기의 강인한 속도제어시스템 구현)

  • Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • In this paper, a robust two-degree-of-freedom(TDF) the speed control system using $H_{\infty}$ optimization method and real genetic algorithm is proposed for the robust stability and the robust performance in dc servo motor system. This control system composed of feedback and feedforward controller. The feedback(FB) controller with $H_{\infty}$ optimization method is designed for real genetic algorithm that is model matching problem using mixed sensitivity function. The feedforward(FF) controller with $H_{\infty}$optimization method is minimized the error between transfer function of the optimal model and the overall transfer function. The proposed robust two-degree-of-freedom speed control system is simulated to the dc servo motor. By the simulation, feedback controller can obtain the robust stability property and feedforward controller can obtain the robust performance property under modelling error. The performance of the dc servo motor is analyzed by the experiment setting. The validity of the proposed method is verified through being compared with pid(proportional integrated differential)control system design method for the dc servo motor.

Zero Power Control for an Attraction Type Magnetic Levitation System using Disturbance Observer (흡인식 자기부상 시스템의 외란관측자를 이용한 최소전력 부상제어)

  • Ahn, Joon-Seon;Yu, Sun-Jong;Kim, Sol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.41-47
    • /
    • 2009
  • In this paper, authors performed improvement of control characteristics of an attraction type magnetic levitation system. The attraction type magnetic levitation system has an inherent instability in the system, therefore its controller must have not only proportional-integral gain but also differential gain additionally. In this paper, authors were proposed control algorithm using disturbance observer(DOB) on feedback signal. The computer simulation and experiments were performed for its verification.

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

A Fuzzy-Logic Controller for an Electrically Driven Steering System for a Motorcar

  • Lee, Sang-Heon;Kim, Il-Soo;Jayantha katupitiya
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1039-1052
    • /
    • 2002
  • This paper presents an application where a Fuzzy-Logic Controller (FLC) is used at a supervisory level to implement mutual coordination of the steering of the two front wheels of a motorcar. The two front wheels are steered by two independent discrete time state feedback controllers with a view to optimize the steering slip angles. The functions of the two controllers are tied together by way of a FLC. Because of the presence of unmodelled dynamics and disturbances acting on the two sides, it is difficult to achieve the desired performance using conventional control systems. This is the primary reason that FLC is emploged to solve the problem. The results show that the implemented system achieved desired coupling between the two independent systems and thereby reduces the difference between the two steered angles.