• Title/Summary/Keyword: Proportional resonant

Search Result 109, Processing Time 0.02 seconds

A New Control Strategy for a Three-Phase PWM Current-Source Rectifier in the Stationary Frame

  • Guo, Qiang;Liu, Heping;Zhang, Yi
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.994-1005
    • /
    • 2015
  • This paper presents a novel power control strategy for PWM current-source rectifiers (CSRs) in the stationary frame based on the instantaneous power theory. In the proposed control strategy, a virtual resistance based on the capacitor voltage feedback is used to realize the active damping. In addition, the proportional resonant (PR) controller under the two-phase stationary coordinate is designed to track the ac reference current and to avoid the strong coupling brought about by the coordinate transformation. The limitations on improving steady-state performance of the PR controller is investigated and mitigated using a cascaded lead-lag compensator. In the z-domain, a straightforward procedure is developed to analyze and design the control-loop with the help of MATLAB/SISO software tools. In addition, robustness against parameter variations is analyzed. Finally, simulation and experimental results verify the proposed control scheme and design method.

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

Feed-Forward Compensation Technique in Stationary Reference Frame for the Enhanced Disturbance Rejection Performance in Parallel Operation of Double-Conversion UPSs (이중 변환 UPS의 병렬 운전 시 외란 저감 성능 향상을 위한 정지 좌표계 상의 전향 보상 기법)

  • Ryu, Hyo-Jun;Yoon, Young-Doo;Mo, Jae-Sung;Choi, Seung-Cheol;Woo, Tae-Gyeom
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Generally, a proportional-resonant controller is used to eliminate steady-state errors during the voltage-current control of a double-conversion uninterruptible power supply (UPS) in a stationary reference frame. Additionally, the feed-forward control compensating for the load current, which can be considered a disturbance of the voltage controller, can be used to improve the disturbance rejection performance. However, during the parallel operation of UPSs, circulating current can occur between UPS modules when performing both feed-forward control and droop control because feed-forward control reduces the circulating current impedance. This study proposes a feed-forward compensation technique that considers the impedance of circulating current. An additional feed-forward compensation technique is developed to enhance the disturbance rejection performance. The validity of the proposed feed-forward compensation technique is verified by the experiment results of the parallel operation of a 500 W double-conversion UPS module.

Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor-Current-Feedback Active Damping

  • Lyu, Yongcan;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1322-1333
    • /
    • 2014
  • To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor-current-feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.

A Resonant Circuit Design of the Inverter for Induction Heating by Analysis of the Coupling Coefficient (결합계수 해석에 의한 유도가열용 인버터의 공진회로 설계법)

  • 이광직;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.90-95
    • /
    • 1997
  • In designing a resonant circuit of the inverter which puts induction heating with high frequency to the load, an inductance L of the circuit, the coupling coefficient of a transformer transfering the output power to load, and the coupling coefficient of load circuit heating with coil affect to the output power of a resonant circuit, the circuit Q and the frequency. Those characteristics of the circuit are analyzed through Thevenan's equivalent circuit of the coupling coefficient type which is derived from the T-type equivalent circuit of a transformer. On this equivalent circuit, the impedance of a transformer referred to its primary side is not only proportional the square of turn ratio, nZ, but also the square of coupling coefficient, K2 This paper proposed a more accurate fundamental method to design a resonant circuit of the inverter by using the Thevenan's equivalent circuit.

  • PDF

A Study on Commercial Frequency Source with High Frequency Resonant Type using ZCS (ZCS를 이용한 고주파 공진형 상용주파수 전원에 관한 연구)

  • Kim, Jong-Hae;Kim, Dong-Hui;No, Chae-Gyun;Gu, Tae-Geun;Bae, Sang-Jun;Lee, Bong-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.448-454
    • /
    • 1999
  • This paper describes a new dc-ac inverter system which for achieving sinusoidal ac waveform makes use of parallel loaded high frequency resonant inverter consisting of full bridge. Each one of the pair of switches in the inverter is driven to synchronous output frequency and the other is driven to PWM signal with resonant frequency proportional to magnitude of sine wave. A forced discontinuous conduction mode is used to realize the quasi-sinusoidal pulse in each switching period. Therefore the inverter generates sinusoidal modulated output voltage including carrier frequency that is resonant frequency. Carrier frequency components of modulated output voltage is filtered by low pass filter. Since current through switches is always zero at its turn-on in the proposed inverter, low stress and low switching loss is achieved. Operating characteristics of the proposed system is analyzed in per unit system using computer simulation. The output voltage of if includes low harmonics and it is almost close to sine wave. Also, the theoretical analysis is proved through the experimental test.

  • PDF

A Study on Effects of Offset Error during Phase Angle Detection in Grid-tied Single-phase Inverters based on SRF-PLL (SRF-PLL을 이용한 계통연계형 단상 인버터의 전원 위상각 검출시 옵셋 오차 영향에 관한 연구)

  • Kwon, Young;Seong, Ui-Seok;Hwang, Seon-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.73-82
    • /
    • 2015
  • This paper proposes an ripple reduction algorithm and analyzes the effects of offset and scale errors generated by voltage sensor while measuring grid voltage in grid-tied single-phase inverters. Generally, the grid-connected inverter needs to detect the phase angle information by measuring grid voltage for synchronization, so that the single-phase inverter can be accurately driven based on estimated phase angle information. However, offset and scale errors are inevitably generated owing to the non-linear characteristics of voltage sensor and these errors affect that the phase angle includes 1st harmonic component under using SRF-PLL(Synchronous Reference Frame - Phase Locked Loop) system for detecting grid phase angle. Also, the performance of the overall system is degraded from the distorted phase angle including the specific harmonic component. As a result, in this paper, offset and scale error due to the voltage sensor in single-phase grid connected inverter under SRF-PLL is analyzed in detail and proportional resonant controller is used to reduce the ripples caused by the offset error. Especially, the integrator output of PI(Proportional Integral) controller in SRF-PLL is selected as an input signal of the proportional resonant controller. Simulation and experiment are performed to verify the effectiveness of the proposed algorithm.

Analysis and Modelling of Vibration Performance for Multi-layered Corrugated Structure

  • Kim, Jin Nyul;Sim, Jae Min;Park, Min Jung;Kim, Ghi Seok;Kim, Jongsoon;Park, Jong Min
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.327-334
    • /
    • 2013
  • Purpose: The purpose of this study was to analyze for resonant frequency, vibration transmissibility and damping ratio of multi-layered corrugated structures using a random vibration test. Methods: The random vibration test was performed by the ASTM D4728 specifications using two paperboards (S120, K180) and two types of flutes (A/F, B/F). Damping ratio of the multi-layered corrugated structures was estimated using a theoretical equation derived from the measured resonant frequency and transmissibility. Results: The resonant frequency and vibration transmissibility of the multi-layered corrugated structures of K180 and B-flute were higher than those of S120 and A-flute, respectively; however, the damping ratio of each sample had the opposite tendency. The resonant frequency was inversely proportional to the sample thickness and static stress; vibration transmissibility and damping ratio were not correlated with sample thickness and static stress. In addition, we developed a mathematical model of the resonant frequency with variables of sample thickness and static stress. Conclusions: Results of this study can be useful for environment-friendly and optimal packaging design since vibration has been a key factor in cushioning packaging design.

Electrical Characteristics of Step-down Piezoelectric Transformer (강압용 압전변압기의 전기적 특성)

  • 신훈범;유영한;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.389-392
    • /
    • 2001
  • In this paper, we have explained electrical characteristics of a step-down Rosen type piezoelectric transformer for AC-adapter. When the electric voltage is applied to the driving piezoelectric vibrator polarized in the longitudinal direction, then output voltage is generated at the generating piezoelectric vibrator polarized in the thickness direction due to the piezoelectric effects. Output voltage and current from a 11-layered and a 13-layered piezoelectric transformer were measured under the various conditions of loads and frequencies. We measured resonant frequency from impedance curve. It was shown from experiments that output voltage has increased and resonant frequency has changed according to various resistor loads. Output current has changed inversely proportional to resistances.

  • PDF

Half-Bridge Resonant Converter with Coreless Isolation Transformer (공심 절연변압기를 구비한 반브릿지 공진형 컨버터)

  • Heo, Joon;Jeon, Seong-Jeub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.636-642
    • /
    • 2017
  • Recently, new power devices, SiC and GaN FETs, are commercialized. They are expected to change power electronics environments. They will raise operating frequencies of power electronic equipments. Accordingly, design method will be changed greatly. In this paper, an 1 MHz resonant converter with fully compensated coreless isolation transformer is proposed, where the primary voltage is proportional to the secondary current and the primary current to the secondary voltage. 30 W prototype is constructed and tested, and its usefulness is verified.