Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.4.994

A New Control Strategy for a Three-Phase PWM Current-Source Rectifier in the Stationary Frame  

Guo, Qiang (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University)
Liu, Heping (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University)
Zhang, Yi (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University)
Publication Information
Journal of Power Electronics / v.15, no.4, 2015 , pp. 994-1005 More about this Journal
Abstract
This paper presents a novel power control strategy for PWM current-source rectifiers (CSRs) in the stationary frame based on the instantaneous power theory. In the proposed control strategy, a virtual resistance based on the capacitor voltage feedback is used to realize the active damping. In addition, the proportional resonant (PR) controller under the two-phase stationary coordinate is designed to track the ac reference current and to avoid the strong coupling brought about by the coordinate transformation. The limitations on improving steady-state performance of the PR controller is investigated and mitigated using a cascaded lead-lag compensator. In the z-domain, a straightforward procedure is developed to analyze and design the control-loop with the help of MATLAB/SISO software tools. In addition, robustness against parameter variations is analyzed. Finally, simulation and experimental results verify the proposed control scheme and design method.
Keywords
Active damping; Controller design; Current-source rectifier; Proportional resonant; Pulse-width modulated; Stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Liserre, R. Teodorescu, and F. Blaabjerg, “Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values,” IEEE Trans. Power Electron., Vol. 21, No. 1, pp. 263-272, Jan.2006.   DOI
2 H.-J. Lee, S. Jung, and S.-K. Sul, “A current controller design for current source inverter-fed ac machine drive system,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1366-1381, Mar. 2013.   DOI
3 Y. W. Li, B. Wu, N. Zargari, J. Wiseman, and D. Xu, “Damping of PWM current-source rectifier using a hybrid combination approach,” IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1383-1393, Jul. 2007.   DOI
4 Y.W Li, “Control and resonance damping of voltage-source and current-source converters with LC filters,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1511-1521, May 2009.   DOI
5 Z. H. Bai, H. Ma, D. W. Xu, and B. Wu, “Control strategy with a generalized DC current balancing method for multi-module current-source converter,” IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 366-373, Jan. 2014.   DOI
6 Z. H. Bai, H. Ma, D. W. Xu, B. Wu, Y. T. Fang, and Y. Y. Yao, “Resonance damping and harmonic suppression for grid-connected current-source converter,” IEEE Trans. Ind. Electron., Vol. 61, No. 7, pp. 3146-3154, Jul. 2014.   DOI
7 M. H. Bierhoff and F. W. Fuchs, “Active damping for three-phase PWM rectifiers with high-order line-side filters,” IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 371-379, Feb. 2009.   DOI
8 M. Salo and H. Tuusa, “A vector controlled current-source PWM rectifier with a novel current damping method,” IEEE Trans. Power Electron., Vol. 15, No. 3, pp. 464-470, May 2000.   DOI
9 J. C. Wiseman and B. Wu, “Active damping control of a high-power PWM current-source rectifier for line-current THD reduction,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 758-764, Jun. 2005.   DOI
10 F. Liu, B. Wu, N. R. Zargari, and M. Pande, “An active damping method using inductor-current feedback control for high-power PWM current source rectifier,” IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2580-2587, Sep. 2011.   DOI
11 M. Su, H. Wang, Y Sun, J. Yang, W. Xiong, and Y. Liu, “AC/DC matrix converter with an optimized modulation strategy for V2G applications,” IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5736-5745, Dec. 2013.   DOI
12 H. Bilgin and M. Ermis, “Design and implementation of a current-source converter for use in industry applications of D-STATCOM,” IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 1943-1957, Aug. 2010.   DOI
13 A. A. A. Radwan and Y. A.-R. I. Mohamed, “Analysis and active suppression of ac- and dc-side instabilities in grid-connected current-source converter-based photovoltaic system,” IEEE Trans. Sustain. Energy, Vol. 4, No. 3, pp. 443-450, Jul. 2011.
14 A. Bouafia, J. -P. Gaubert, and F. Krim, “Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using space-vector modulation (SVM),” IEEE Trans. Power Electron., Vol. 25, No.1, pp. 228-236, Jan. 2010.   DOI
15 X. H. Wu, S. K. Panda, and J. X. Xu, “Design of a plug-in repetitive control scheme for eliminating supply-side current harmonics of three-phase PWM boost rectifiers under generalized supply voltage conditions,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1800-1810, Jul. 2010.   DOI
16 W. Zhang, Y. Hou, X. Liu, and Y. Zhou, “Switched control of three-phase voltage source PWM rectifier under a wide-range rapidly varying active load,” IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 881-890, Feb. 2012.   DOI
17 Y. Shtessel, S. Baev, and H. Biglari, “Unity power factor control in three phase ac/dc boost converter using sliding modes,” IEEE Trans. Ind. Electron., Vol. 55, No. 11, pp. 3874-3882, Nov. 2008.   DOI
18 Y. Neba, “A simple method for suppression of resonance oscillation in PWM current source converter,” IEEE Trans. Power Electron., Vol. 20, No. 1, pp. 132-139, Jan. 2005.   DOI
19 J. R. Rodriguez, J. W. Dixon, J. R. Esponoza, J. Pontt, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 5-22, Feb. 2005.   DOI
20 T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems-Part II,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 543-560, Feb. 2014.   DOI
21 A. Stupar, T. Friedli, J. Minibock, and J. W. Kolar, “Towards a 99% efficient three-phase buck-type PFC rectifier for 400-V dc distribution systems,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 1732-1744, Apr. 2012.   DOI
22 Z. Bai, X. Ruan, and Z. Zhang, “A generic six-step direct PWM (SS-DPWM) scheme for current source converter,” IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 659-666, Mar. 2010.   DOI
23 K. Basu, A. K. Sahoo, V. Chandrasekaran, and N. Mohan, “Grid-side ac line filter design of a current source rectifier with analytical estimation of input current ripple,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6394-6405, Dec. 2014.   DOI
24 M. H. Ali, B. Wu, and R. A. Dougal, “An overview of SMES applications in power and energy systems,” IEEE Trans. Sustain. Energy, Vol. 1, No. 1, pp. 38-47, Apr. 2010.   DOI
25 S. G. Parker, B. P. McGrath, and D. G Holmes, “Regions of active damping control for LCL filters,” IEEE Trans. Ind. Appl., Vol. 50, No. 1, pp. 424-432, Jan./Feb. 2014.   DOI
26 D. H. Pan, X. B. Ruan, C. L. Bao, W. W. Li, and X. H. Wang, “Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3414-3427, Jul. 2014.   DOI
27 A. Yepes, F. Freijedo, J. Doval-Gandoy, O. Lopez, J. Malvar, and P. Fernandez-Comesana, “Effects of discretization methods on the performance of resonant controllers,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1692-1712, Jul. 2010.   DOI
28 O. Hegazy, R. Barrero, J. Van Mierlo, P. Lataire, N. Omar, and T. Coosemans, “An advanced power electronics interface for electric vehicles applications”, IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 1-14, Dec. 2013.   DOI
29 R. Pena-Alzola, M. Liserre, F. Blaabjerg, R. Sebastian, J. Dannehl, and F.W. Fuchs, “Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters,” IEEE Trans. Ind. Informat., Vol. 10, No. 1, pp. 43-52, Feb. 2014.   DOI
30 K. Wei, Z. Lixia, and W. Yansong, “Study on output characteristic of bi-direction current source converters,” IET Power Electron., Vol. 5, No. 7, pp. 929-934, Aug. 2012.   DOI
31 Z. Li, Y. Li, P. Wang, H. Zhu, C. Liu, and W. Xu, “Control of three phase boost-type PWM rectifier in stationary frame under unbalanced input voltage,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2521-2530, Oct. 2010.   DOI
32 D. Roiu, R. I. Bojoi, L. R. Limongi, and A. Tenconi, “New stationary frame control scheme for three-phase PWM rectifiers under unbalanced voltage dips conditions,” IEEE Trans. Ind. Appl., Vol. 46, No. 1, pp. 268-277, Jan./Feb. 2010.   DOI
33 C. Xia, Z. Wang, T. Shi, and X. He, “An improved control strategy of triple line-voltage cascaded voltage source converter based on proportional-resonant controller,” IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2894-2908, Jul. 2013.   DOI
34 H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, Wiley-IEEE Press, Hoboken, Chap. 3, 2007.
35 R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, "Proportional resonant controllers and filters for grid-connected voltage-source converters," in IEE Proc. Electric Power Appl., Vol. 153, No. 5, pp. 201-209, 2006.