• 제목/요약/키워드: Proportional and integral controller

검색결과 399건 처리시간 0.03초

비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술 (Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller)

  • 구배영;원상철
    • 제어로봇시스템학회논문지
    • /
    • 제21권8호
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

BLDC 전동기의 속도 제어를 위한 퍼지 P+ID 제어기 설계 (The Design of Fuzzy P+ID Controller for Brushless DC Motor Speed Control)

  • 김영식;김성중
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.823-829
    • /
    • 2006
  • 본 논문에서는 기존의 PID 제어기의 P 부분만을 퍼지 논리제어기로 대체한 퍼지 P+ID 제어기를 제안하였으며. 제안된 퍼지 P+ID 제어기는 단지 하나의 제어파라미터만을 추가하여 기존 PID 제어기를 조절하기 때문에 쉽게 설계 할 수 있으며, PID 제어기의 구조를 유지함으로서 기존 장치의 하드웨어 부분을 수정할 필요가 없다. 또한, 퍼지 P+ID 제어기는 기존 PID 제어기와 비교해서 충분한 안정성을 보여주며, 구조가 단순하고 계산 량이 적어 제어기의 동조시간을 기존의 퍼지 제어기에 비해서 많이 줄일 수 있는 장점이 있다. 제안된 Fuzzy P+ID 제어기를 BLDC 모터에 적용하여, 시뮬레이션 및 실험을 통하여 본 논문에서 제안한 제어기가 기존의 제어기보다 제어성능이 우수함을 확인하였다.

  • PDF

Gain Tuning of a Fuzzy Logic Controller Superior to PD Controllers in Motor Position Control

  • Kim, Young-Real
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.188-199
    • /
    • 2014
  • Although the fuzzy logic controller is superior to the proportional integral derivative (PID) controller in motor control, the gain tuning of the fuzzy logic controller is more complicated than that of the PID controller. Using mathematical analysis of the proportional derivative (PD) and fuzzy logic controller, this study proposed a design method of a fuzzy logic controller that has the same characteristics as the PD controller in the beginning. Then a design method of a fuzzy logic controller was proposed that has superior performance to the PD controller. This fuzzy logic controller was designed by changing the envelope of the input of the of the fuzzy logic controller to nonlinear, because the fuzzy logic controller has more degree of freedom to select the control gain than the PD controller. By designing the fuzzy logic controller using the proposed method, it simplified the design of fuzzy logic controller, and it simplified the comparison of these two controllers.

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

반포화 적분-비례제어기를 이용한 유도전동기의 속도제어 (Speed Control of Induction Motor Using Anti-windup Integral-Proportional Controller)

  • 정재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.215-218
    • /
    • 2000
  • The windup phenomenon appears and degrades control performance when a controller with integrating action is used and the plant input is limited. An anti-windup integral -proportional(IP) controller is proposed for the variable-speed motor drives and it is experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage source inverter(VSI). Although the operating conditions like motor load and speed command is changed under the limited plant input it is experimentally verified that the speed response has much improved performance such as no overshoot and fast settling time and the maximum plant input is also effectively utilized.

  • PDF

Incremental Passivity Based Control for DC-DC Boost Converters under Time-Varying Disturbances via a Generalized Proportional Integral Observer

  • He, Wei;Li, Shihua;Yang, Jun;Wang, Zuo
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.147-159
    • /
    • 2018
  • In this paper, the voltage tracking control of a conventional DC-DC boost converter affected by unknown, time-varying circuit parameter perturbations is investigated. Based on the fundamental property of incremental passivity, a passivity based control law is designed. Then, to obtain a better disturbance rejection property, two generalized proportional integral (GPI) observers are employed to estimate the time-varying uncertainties in the output voltage and inductor current channels, and the estimated values are applied as feedforward compensation. Moreover, the global trajectory tracking performance of a system with disturbances is ensured under the composite controller. Finally, simulation and experiment studies are provided to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed controller delivers a promising disturbance rejection capability as well as a good nominal tracking performance.

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.

자이로와 가속도 센서를 이용한 차륜형 도립진자 이동로봇 제어 (The Wheeled Inverted Pendulum Mobile Robot Control Using Gyroscope and Accelerometer Sensor)

  • 유환신;박형배
    • 한국항행학회논문지
    • /
    • 제16권4호
    • /
    • pp.703-708
    • /
    • 2012
  • 본 논문은 비선형성이 내재된 모바일 역진자형 로봇 시스템의 제어기 성능을 개선하고, 위치와 속도제어를 위하여 두 개의 다룬 휠로 구동되는 역진자형 타입의 모바일 로봇으로 모델링하였다. 이 시스템은 파라미터의 변화를 실시간으로 체크하고. 제어신호는 여러 상황에서 시스템이 원하는 상태를 유지하도록 변화하게 구성하였고, PI 제어기로 설계하였다. 시스템이 불안정하므로 시스템의 안전성 판별을 통하여 PI 제어기의 게인 값을 설계하였다. 위 실험 결과로서 수동 튜딩 방법 보다 터 좋은 적절한 방법의 성능을 얻을 수 있었다.

An Application of Proportional-Resonant Controller in MMC-HVDC System under Unbalanced Voltage Conditions

  • Quach, Ngoc-Thinh;Ko, Ji-Han;Kim, Dong-Wan;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1746-1752
    • /
    • 2014
  • This paper presents an application of proportional-resonant (PR) current controllers in modular multilevel converter-high voltage direct current (MMC-HVDC) system under unbalanced voltage conditions. The ac currents are transformed and controlled in the stationary reference frame (${\alpha}{\beta}$-frame). Thus, the complex analysis of the positive and negative sequence components in the synchronous rotating reference frame (dq-frame) is not necessary. With this control method, the ac currents are kept balanced and the dc-link voltage is constant under the unbalanced voltage fault conditions. The simulation results based on a detailed PSCAD/EMTDC model confirm the effectiveness of the proposed control method.