Browse > Article
http://dx.doi.org/10.6113/JPE.2018.18.1.147

Incremental Passivity Based Control for DC-DC Boost Converters under Time-Varying Disturbances via a Generalized Proportional Integral Observer  

He, Wei (Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University)
Li, Shihua (Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University)
Yang, Jun (Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University)
Wang, Zuo (Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University)
Publication Information
Journal of Power Electronics / v.18, no.1, 2018 , pp. 147-159 More about this Journal
Abstract
In this paper, the voltage tracking control of a conventional DC-DC boost converter affected by unknown, time-varying circuit parameter perturbations is investigated. Based on the fundamental property of incremental passivity, a passivity based control law is designed. Then, to obtain a better disturbance rejection property, two generalized proportional integral (GPI) observers are employed to estimate the time-varying uncertainties in the output voltage and inductor current channels, and the estimated values are applied as feedforward compensation. Moreover, the global trajectory tracking performance of a system with disturbances is ensured under the composite controller. Finally, simulation and experiment studies are provided to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed controller delivers a promising disturbance rejection capability as well as a good nominal tracking performance.
Keywords
DC-DC boost converter; Disturbance; Generalized Proportional Integral (GPI) observer; Passivity-Based Control (PBC);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Ortega, A. J. Van der Schaft, I. Mareels, and B. M. Maschke, “Putting energy back in control,” IEEE Contr. Syst. Mag., Vol. 21, No. 2, pp. 18-33, Apr. 2001.   DOI
2 F. Doerfler, J. K. Johnsen, and F. Allgoewer, “An introduction to interconnection and damping assignment passivity based control in process engineering,” J. Process Contr., Vol. 19, No. 9, pp. 1413-1426, Oct. 2009.   DOI
3 A. J. Van der Schaft, $L_2$-gain and Passivity Techniques in Nonlinear Control, Springer, 1996.
4 A. Y. Achour, B. Mendil, S. Bacha, and I. Munteanu, “Passivity-based current controller design for a permanent-magnet synchronous motor,” ISA Transactions, Vol. 48, No. 3, pp. 336-346, Jul. 2009.   DOI
5 H. K. Khalil, Nonlinear Systems, 2nd ed., Prentice-Hall, 1996.
6 C. Ren and S. Ma, "Generalized proportional integral observer based control of an omnidirectional mobile robot," Mechatronics, Vol. 26, pp. 36-44, Mar. 2015.   DOI
7 C. Y. Chan, “Simplified parallel-damped passivity based controllers for DC-DC power converters,” Automatica, Vol. 44, No. 11, pp. 2977-2980, Nov. 2008.   DOI
8 S. H. Li, J. Yang, W. H. Chen, and X. S. Chen, Disturbance Observer-based Control: Methods and Applications, CRC press, 2014.
9 L. S. Yang and C. C. Lin, “Analysis and implementation of a DC-DC converter for hybrid power supplies systems,” J. Power Electron., Vol. 15, No. 6, pp. 1438-1445, Nov. 2015.   DOI
10 M. Pahlevaninezhad, P. Das, J. Drobnik, P. K. Jain, and A. Bakhshai, “A ZVS interleaved boost AC-DC converter used in plug-in electric vehicles,” IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3513-3529, Aug. 2012.   DOI
11 Y. X. Wang, D. H. Yu, and Y. B. Kim, “Robust time-delay control for the DC-DC boost converter,” IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4829-4837, Sept. 2014.   DOI
12 P. Karamanakos, T. Geyer, and S. Manias, “Direct voltage control of DC-DC boost converters using enumeration-based model predictive control,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 968-978, Feb. 2014.   DOI
13 R. Ortega, G. Espinosa-Perez, and A. Astolfi, “Passivitybased control of AC drives: theory for the user and application examples,” International Journal of Control, Vol. 86, No. 4, pp. 625-635, Jan. 2013.   DOI
14 J. Linares-Flores, A. Hernandez-Mendez, C. Garcia- Rodriguez, and H. Sira-Ramirez, “Robust nonlinear adaptive control of a “boost” converter via algebraic parameter identification,” IEEE Trans. Ind. Electron., Vol. 61, No. 8, pp. 4105-4114, Aug. 2014.   DOI
15 R. Cisneros, M. Pirro, G. Bergna, R. Ortega, G. Ippoliti, and M. Molinas, "Global tracking passivity-based PI control of bilinear systems: application to the interleaved boost and modular multilevel converters," Control Engineering Practice, Vol. 43, pp. 109-119, Oct. 2015.   DOI
16 A. Hernandez-Mendez, J. Linares-Flores, and H. Sira-Ramirez, “A backstepping approach to decentralized active disturbance rejection control of interacting boost converters,” IEEE Trans. Ind. Appl., Vol. 53, No. 4, pp. 4063-4072, Jul./Aug. 2017.   DOI
17 Q. L. Tong, Q. Zhang, R. Min, X. C. Zou, Z. L. Liu, and Z. Q. Chen, “Sensorless predictive peak current control for boost converter using comprehensive compensation strategy,” IEEE Trans. Ind. Electron., Vol. 61, No. 6, pp. 2754-2766, Jun. 2014.   DOI
18 L. Martinez-Salamero, G. Garcia, M. Orellana, C. Lahore, and B. Estibals, “Start-up control and voltage regulation in a boost converter under sliding-mode operation,” IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4637-4649, Oct. 2013.   DOI
19 S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A cascaded high step-up DC-DC converter with single switch for microsource applications,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1146-1153, Apr. 2011.   DOI
20 Y. I. Son and I. H. Kim, “Complementary PID controller to passivity-based nonlinear control of boost converters with inductor resistance,” IEEE Trans. Contr. Syst. Technol., Vol. 20, No. 3, pp. 826-834, May 2012.   DOI
21 R. J. Wai and L. C. Shih, “Design of voltage tracking control for DC-DC boost converter via total sliding-mode technique,” IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2502-2511, Jun. 2011.   DOI
22 M. Hernandez-Gomez, R. Ortega, F. Lamnabhi-Lagarrigue, and G. Escobar, “Adaptive PI stabilization of switched power converters,” IEEE Trans. Contr. Syst. Technol., Vol. 18, No. 3, pp. 688-698, May 2010.   DOI
23 J. Q. Han, “From PID to active disturbance rejection control,” IEEE Trans. Ind. Electron., Vol. 56, No. 3, pp. 900-906, Mar. 2009.   DOI
24 I. Yazici, “Robust voltage mode controller for DC-DC boost converter,” IET Power Electron., Vol. 8, No. 3, pp. 342-349, Mar. 2014.   DOI
25 H. El-Fadil, F. Giri, O. El-Magueri, and F. Z. Chaoui, “Control of DC-DC power converters in the presence of coil magnetic saturation,” Control Engineering Practice, Vol. 17, No. 7, pp. 849-862, Jul. 2009.   DOI
26 C. Olalla, R. Leyva, A. El-Aroudi, P. Garces, and I. Queinnec, “LMI robust control design for boost PWM converters,” IET Power Electron., Vol. 3, No. 1, pp. 75-85, Jan. 2010.   DOI
27 C. L. Zhang, J. X. Wang, S. H. Li, B. Wu, and C. J. Qian, "Robust control for PWM-based DC-DC buck power converters with uncertainty via sampled-data output feedback," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 504-515, Jan. 2015.   DOI
28 J. X. Wang, S. H. Li, J. Yang, B. Wu, and Q. Li, " Extended state observer based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances," IET Power Electron., Vol. 9, No. 4, pp. 579-586, Feb. 2015.
29 M. Salimi and A. Zakipour, "Lyapunov based adaptive robust control of the non-minimum phase DC-DC converters using input-output linearization," J. Power Electron., Vol. 15, No. 6, pp. 1577-1583, Nov. 2015.   DOI
30 J. X. Wang, C. L. Zhang, S. H. Li, J. Yang, and Q. Li, “Finite-time output feedback control for PWM-based DC-DC buck power converters of current sensorless mode,” IEEE Trans. Contr. Syst. Technol., Vol. 25, No. 4, pp. 1359-1371, Jul. 2017.   DOI
31 R. J. Wai and L. C. Shi, “Adaptive fuzzy-neural-network design for voltage tracking control of a DC-DC boost converter,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 2104-2115, Apr. 2012.   DOI
32 H. X. Liu and S. H. Li, “Speed control for PMSM servo system using predictive functional control and extended state observer,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1171-1183, Feb. 2012.   DOI
33 V. Utkin, “Sliding mode control of DC-DC converters,” Journal of the Franklin Institute, Vol. 350, No. 8, pp. 2146-2165, Oct. 2013.   DOI
34 C. Olalla, I. Queinnec, R. Leyva, and A. EI-Aroundi, “Robust optimal control of bilinear DC-DC converters,” Control Engineering Practice, Vol. 19, No. 7, pp. 688-699, Jul. 2011.   DOI
35 P. Sun and L. Zhou, “Duty ratio predictive control scheme for digital control of DC-DC switching converters,” J. Power Electron., Vol. 11, No. 2, pp. 315-320, Mar. 2006.
36 C. Chang, Y. Yuan, T. Jiang, and Z. Zhou, "Field programmable gate array implementation of a single-input fuzzy proportional-integral-derivative controller for DC-DC buck converters," IET Power Electron., Vol. 9, No. 6, pp. 1259-1266, Apr. 2016.   DOI
37 S. R. Sanders and G. C. Verghese, “Lyapunov-based control for switched power converters,” IEEE Trans. Power Electron., Vol. 7, No. 1, pp. 17-24, Jan. 1992.   DOI
38 S. H. Li and Z. G. Liu, “Adaptive speed control for permanent magnet synchronous motor system with variations of load inertia,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3050-3059, Aug. 2009.   DOI
39 R. Ortega, J. A. L. Perez, P. J. Nicklasson, and H. Sira-Ramirez, Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, Series Comunications and Control Engineering, chap. 3, pp. 428-640, 1998.