• 제목/요약/키워드: Proportional Integral Derivative

검색결과 223건 처리시간 0.03초

Design of a Fuzzy Logic Controller for a Rotary-type Inverted Pendulum System

  • Park, Byung-Jae;Ryu, Chun-ha;Choi, Bong-Yeol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권2호
    • /
    • pp.109-114
    • /
    • 2002
  • Various inverted pendulum systems have been frequently used as a model for the performance test of the proposed control system. We first identify a rotary-type inverted pendulum system by the Euler-Lagrange method and then design a FLC (Fuzzy Logic Controller) fur the plant. FLC`s are one of useful control schemes fur plants having difficulties in deriving mathematical models or having performance limitations with conventional linear control schemes. Many FLC`s imitate the concept of conventional PD (Proportional-Derivative) or PI (Proportional-Integral) controller. That is, the error e and the change-of-error are used as antecedent variables and the control input u the change of control input Au is used as its consequent variable for FLC`s. In this paper we design a simple-structured FLC for the rotary inverted pendulum system. We also perform some computer simulations to examine the tracking performance of the closed-loop system.

Linearizing and Control of a Three-phase Photovoltaic System with Feedback Method and Intelligent Control in State-Space

  • Louzazni, Mohamed;Aroudam, Elhassan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권6호
    • /
    • pp.297-304
    • /
    • 2014
  • Due to the nonlinearity and complexity of the three-phase photovoltaic inverter, we propose an intelligent control based on fuzzy logic and the classical proportional-integral-derivative. The feedback linearization method is applied to cancel the nonlinearities, and transform the dynamic system into a simple and linear subsystem. The system is transformed from abc frame to dq0 synchronous frame, to simplify the state feedback linearization law, and make the close-loop dynamics in the equivalent linear model. The controls improve the dynamic response, efficiency and stability of the three-phase photovoltaic grid system, under variable temperature, solar intensity, and load. The intelligent control of the nonlinear characteristic of the photovoltaic automatically varies the coefficients $K_p$, $K_i$, and $K_d$ under variable temperature and irradiation, and eliminates the oscillation. The simulation results show the advantages of the proposed intelligent control in terms of the correctness, stability, and maintenance of its response, which from many aspects is better than that of the PID controller.

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.

PI 관측기 기반 반도체 장비 모터의 궤적 추종 제어기 설계 (Trajectory Tracking Controller for Semiconductor Equipment Motors based on PI Observer)

  • 조윤성;최현준;전상민;신지훈;이재영;이범주;손영익
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.96-103
    • /
    • 2023
  • This paper presents a robust position tracking controller for a motor used in semiconductor equipment, utilizing the motor angle measurement. Precise position control is challenging due to the presence of uncertainties in various motor applications. The proposed controller consists of a PD (Proportional-Derivative) controller and a PIO (Proportional-Integral Observer) to estimate the system's state and equivalent disturbance compensating for the uncertainties. Since the stability alternates as the observer gain increases, we have investigated it through the closedloop root locus under the system parameters change. The analysis has showed that the inertia of the motor is the main parameter that affects it, and by adjusting the control gain appropriately, the system can be rendered to be stable even when the inertia of the motor changes. The effectiveness of the proposed control algorithm is validated through computer simulations, followed by a comparison of its performance with the results of a previous study.

  • PDF

반응 표면법을 이용한 자기부상 반송장치의 PID 이득값 조정 (Response Surface Tuning Methods in PID Control of the Magnetic Levitation Conveyor System)

  • 배규영;김창현;김봉섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2609-2614
    • /
    • 2011
  • A proportional integral derivative (PID) controller is designed and applied to a magnetic levitation conveyor system to control the levitation gap length of the electromagnet constantly. The PID gain parameters are optimized by response surface methods (RSM). The controller is verified with the state-space model of electromagnetic suspension by MATLAB/SIMULINK program. And, the controller and the state-space model are also verified experimentally. Simulation and experimental results shows the effectiveness of the PID gain tuning by RSM as compared with the classical PID tuning.

  • PDF

도어제어장치(DCU)의 PID Control DB 생성장치 (Door Control Unit Create Provision for PID Control DB)

  • 김진헌;권영현;성창용;권민정;이한수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3065-3072
    • /
    • 2011
  • PID Control Data Base creation device of DCU is safety operation technology of train door. For keeping the normal condition of door, measured value of regular condition and unusual(trouble detected) condition should be recorded by encoding. The door should be measured itself as this value is compared with standard vale. If it's condition of the door and for reaching the datum point and ot does self-diagnosis. This aim for Technical Realization is that carry out safety train operation by using the Estimation Data Base and protect before door-trouble.

  • PDF

Design and Control of a Six-degree of Freedom Autonomous Underwater Robot 'CHALAWAN'

  • Chatchanayuenyong, T.;Parnichkun, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1110-1115
    • /
    • 2004
  • Water covers two-thirds of the earth and has a great influence on the future existence of all human being. Thailand has extensive coastline and near shore water that contain vast biological and mineralogical resources. The rivers and canals can be found around the country especially in the Bangkok, which once called the Venice of the East. Autonomous underwater robot (AUR) will be soon a tool to help us better understand water resources and other environmental issues. This paper presents the design and basic control of a six-degree of freedom AUR "Chalawan", which was constructed to be used as a testbed for shallow. It is a simple low cost open-frame design, which can be modified easily to supports various research areas in the underwater environment. It was tested with a conventional proportional-integral-derivative (PID) controller. After fine-tuning of the controller gains, the results showed the controller's good performances. In the future, the dynamic model of the robot will be analyzed and identified. The advanced control algorithm will be implemented based on the obtained model.

  • PDF

Design of a Fuzzy P+ID controller for brushless DC motor speed control

  • Kim, Young-Sik;Kim, Sung-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.627-630
    • /
    • 2004
  • The PID type controller has been widely used in industrial application due to its simply control structure, ease of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

A Study on Development of ATCS for Automated Stacking Crane using Neural Network Predictive Control

  • Sohn, Dong-Seop;Kim, Sang-Ki;Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.346-349
    • /
    • 2003
  • For a traveling crane, various control methods such as neural network predictive control and TDOFPID(Two Degree of Freedom Proportional Integral Derivative) are studied. So in this paper, we proposed improved navigation method to reduce transfer time and sway with anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the NNPPID(Neural Network Predictive PID) controller to control the precise move and speedy navigation. The proposed predictive control system is composed of the neural network predictor, TDOFPID controller, and neural network self-tuner. We analyzed ASC(Automated Stacking Crane) system and showed some computer simulations to prove excellence of the proposed controller than other conventional controllers.

  • PDF

고차 시스템 제어를 위한 CDM 기법을 이용한 PIDA 제어기 설계 (PIDA Controller Design by CDM for Control of High-Order system)

  • 하달영;조용성;김승철;설재훈;임영도
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.353-360
    • /
    • 2000
  • A design of PIDA(Proportional-Integral-Derivative-Acceleration) controller for the third-order plant using the CDM(Coefficient Diagram Method) is presented. Using CDM, the closed-loop system with the designed PIDA controller can be made stable and satisfied both the transient and steady state response specifications without any adjustment. The effect of output step disturbance can also be lastly rejected. The fast step response of the controlled system can be achieved by reducing the equivalent time constant. The MATLABs simulation results show that the performances of the designed controlled system using CDM is better than the performance of the controlled system using PIDA controller designed by its own technique.

  • PDF