• Title/Summary/Keyword: Propeller Efficiency

Search Result 187, Processing Time 0.022 seconds

Design on High Efficiency and Light Composite Propeller Blade of High Speed Turboprop Aircraft (고속 터보프롭 항공기용 고효율 경량화 복합재 프로펠러 블레이드 설계 연구)

  • Kong, Chang-Duk;Lee, Kyung-Sun;Park, Hyun-Bum;Choi, Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.57-68
    • /
    • 2012
  • In this study, designs of the high efficiency composite propeller blade for a high speed turboprop aircraft, which will be used for a next generation regional commercial aircraft in Korea, are performed. Both the vortex theory and the blade element theory are used for preliminary aerodynamic design and performance analysis of the propeller. Then the aerodynamic design result is confirmed through performance analysis using a commercial CFD code, ANSYS. The carbon/epoxy composite materials is used, and the skin-spar-foam sandwich type structure is adopted for improvement of lightness and structural stability. Finally, it is investigated that the proposed propeller blade has high efficiency and structural safety through both aerodynamic and structural analysis and experimental test of a prototype propeller blade.

High-efficiency propeller development for Multicopter type UAV (멀티콥터형 무인기용 고효율 프로펠러 개발)

  • Wie, Seong-Yong;Kang, Hee Jung;Kim, Taejoo;Kee, Young-Jung;Song, Jaerim
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.581-593
    • /
    • 2017
  • In order to develop high efficiency propeller for multicopter type UAV, we designed, analyzed and tested aerodynamic and structural dynamics. For the design of the high efficiency propeller, the optimum design method was applied for the determination of the airfoil and the three-dimensional planform is designed to reduce induced power of the propeller. The flight suitability of the derived shape was determined through structural design and analysis. The rotation test was performed to confirm the performance of the analytically designed shape. In this paper, we propose a procedural propeller design methodology using these design analysis test methods.

Design on High Efficiency and Light Composite Propeller Blade of Regional Aircraft (중형항공기급 고효율 경량화 복합재 프로펠러 블레이드 설계 연구)

  • Kong, Chang-Duk;Lee, Kyung-Sun;Park, Hyun-Bum;Choi, Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.253-258
    • /
    • 2012
  • In this study, designs of the high efficiency composite propeller blade for a high speed turboprop aircraft, which will be used for a next generation regional commercial aircraft in Korea, are performed. Both the vortex theory and the blade element theory are used for preliminary aerodynamic design and performance analysis of the propeller. Then the aerodynamic design result is confirmed through performance analysis using a commercial CFD code, ANSYS. The carbon/epoxy composite materials is used, and the skin-spar-foam sandwich type structure is adopted for improvement of lightness and structural stability. Finally, it is investigated that the proposed propeller blade has high efficiency and structural safety through both aerodynamic and structural analysis and experimental test of a prototype propeller blade.

  • PDF

Study on Propeller Design for Fishing Vessel's High Efficiency Standard Series Propeller (KF Series) (어선용 고효율 표준 시리즈(KF 시리즈) 프로펠러를 위한 설계 연구)

  • Lee, Won-Joon;Kim, Moon-Chan;Chun, Jang-Ho;Jang, Jin-Yeol;Mun, Won-Jun;Lee, Chang-Sup
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • The present study deals with the propeller design for the standard new propeller series so called KF Series for 52ton class fishing vessel. The MAU or B series have been usually used for the fishing vessel's propeller, which are to be improved in consideration of the efficiency as well as the cavitation point of view. The high technology of propeller design has been applied to the design of 52ton class fishing vessel's propeller in the present study. The new designed series propellers will be validated by the experimental results whose data will be also used for the new series chart.

Optimization of energy saving device combined with a propeller using real-coded genetic algorithm

  • Ryu, Tomohiro;Kanemaru, Takashi;Kataoka, Shiro;Arihama, Kiyoshi;Yoshitake, Akira;Arakawa, Daijiro;Ando, Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.406-417
    • /
    • 2014
  • This paper presents a numerical optimization method to improve the performance of the propeller with Turbo-Ring using real-coded genetic algorithm. In the presented method, Unimodal Normal Distribution Crossover (UNDX) and Minimal Generation Gap (MGG) model are used as crossover operator and generation-alternation model, respectively. Propeller characteristics are evaluated by a simple surface panel method "SQCM" in the optimization process. Blade sections of the original Turbo-Ring and propeller are replaced by the NACA66 a = 0.8 section. However, original chord, skew, rake and maximum blade thickness distributions in the radial direction are unchanged. Pitch and maximum camber distributions in the radial direction are selected as the design variables. Optimization is conducted to maximize the efficiency of the propeller with Turbo-Ring. The experimental result shows that the efficiency of the optimized propeller with Turbo-Ring is higher than that of the original propeller with Turbo-Ring.

A Study of Aero for Hovercraft (공기부양선의 추진기 고찰)

  • Kang, Dong-Woo;Lee, In-Sun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.62-67
    • /
    • 2008
  • The hovercraft is the amphibious hovercraft. Design and manufacturing companies of the aero propeller exist rarely in the world. Hence the propeller has beef designed and manufactured by manufacturing companies which make aero propeller mainly. In this paper, the hovercraft propeller of similar, which is building and designing by HHIC, is considered the type of aero propeller, rotational speed, diameter, number of blades, Open air propeller efficiency. As the result of check, hovercraft which is necessary huge static thrust is needed the ducted propeller in order to improve climbing capacity. However, the number of blades and turning direction almost do not affect.

  • PDF

Flow simulation and efficiency hill chart prediction for a Propeller turbine

  • Vu, Thi;Koller, Marcel;Gauthier, Maxime;Deschenes, Claire
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.243-254
    • /
    • 2011
  • In the present paper, we focus on the flow computation of a low head Propeller turbine at a wide range of design and off-design operating conditions. First, we will present the results on the efficiency hill chart prediction of the Propeller turbine and discuss the consequences of using non-homologous blade geometries for the CFD simulation. The flow characteristics of the entire turbine will be also investigated and compared with experimental data at different measurement planes. Two operating conditions are selected, the first one at the best efficiency point and the second one at part load condition. At the same time, for the same selected operating points, the numerical results for the entire turbine simulation will be compared with flow simulation with our standard stage calculation approach which includes only guide vane, runner and draft tube geometries.

Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propellers (전산유체역학을 이용한 항공기 프로펠러 공력특성 연구)

  • Cho, Kyuchul;Kim, Hyojin;Park, Il-Ju;Jang, Sungbok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.917-926
    • /
    • 2012
  • The analysis of aerodynamic characteristics for aircraft propellers is studied to develop high efficiency composite propellers. It is to verify the accuracy and reliability of predicting the efficiency characteristics of aircraft propellers by applying nonlinear numerical analysis. The numerical simulation method incorporated the CFD code, which is based on RANS (Reynolds Averaged Navier-Stocks) equation. The study includes a comparative analysis between the numerical simulation results and the wind tunnel test results of the full-scale aircraft propeller. The comparison shows that thrust and power coefficients of the propeller calculated by nonlinear numerical analysis are higher than those based on the results generated from the wind tunnel test. The efficiency of the propeller calculated by numerical analysis matches closely to the efficiency based on the wind tunnel test results. The verification results are analyzed, then, will be used in optimizing the design and manufacture of the subject aircraft propeller studied.

Inclination angle influence on noise of cavitating marine propeller

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-65
    • /
    • 2020
  • In this study, the effects of inclined shaft angle on the hydro-acoustic performance of cavitating marine propellers are investigated by a numerical method developed before and Brown's empirical formula. The cavitating blades are represented by source and vortex elements. The cavity characteristics of the blades such as cavitation form, cavity volume, cavity length etc., are computed at a given cavitation number and at a set advance coefficient. A lifting surface method is applied for these calculations. The numerical lifting surface method is validated with experimental results of DTMB 4119 model benchmark propeller. After calculation of hydrodynamic characteristics of the cavitating propeller, noise spectrum and overall sound pressure level (OASPL) are computed by Brown's equation. This empirical equation is also validated with another numerical results found in the literature. The effects of inclined shaft angle on thrust coefficient, torque coefficient, efficiency and OASPL values are examined by a parametric study. By modifying the inclination angles of propeller, the thrust, torque, efficiency and OASPL are computed and compared with each other. The influence of the inclined shaft angle on cavity patterns on the blades are also discussed.

Study on the Contra-Rotating Propeller system design and full-scale performance prediction method

  • Min, Keh-Sik;Chang, Bong-Jun;Seo, Heung-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • A ship's screw-propeller produces thrust by rotation and, at the same time, generates rotational flow behind the propeller. This rotational flow has no contribution to the generation of thrust, but instead produces energy loss. By recovering part of the lost energy in the rotational flow, therefore, it is possible to improve the propulsion efficiency. The contra-rotating propeller (CRP) system is the representing example of such devices. Unfortunately, however, neither a design method nor a full-scale performance prediction procedure for the CRP system has been well established yet. The authors have long performed studies on the CRP system, and some of the results from the authors' studies shall be presented and discussed.