• Title/Summary/Keyword: Propagation time

Search Result 2,219, Processing Time 0.036 seconds

Timing Analysis by Concurrent Event Propagation (병렬 사건전파 방식에 의한 타이밍 분석)

  • Han, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1344-1348
    • /
    • 1999
  • This paper proposes concurrent event propagation technique for timing analysis. The technique makes it possible to find several input vectors and sensitizable paths at the same time. The concurrent event propagation technique is based on the event driven simulation and the timing analysis technique with boolean equations. The technique propagates as many events as possible at the same time while preventing propagation of boolean terms which do not sensitize paths. Since events do not propagate through false paths, the longest path which successfully propagates events to one of the primary outputs is one of the longest sensitizable paths. The technique can speed up timing analysis by unifying path sensitization and maximum delay calculation.

  • PDF

The Experimented MF Propagation Modeling for Mountain geography (산악지형에 적합한 경험적 중파 전파 모델링)

  • Kim, Bum-Chang;Kwon, Se-Woong;Yoon, Young-Joong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.18-22
    • /
    • 2003
  • In this thesis, Middle frequency wave propagation modeling is studied for the varies mountain geography the experimented middle frequency propagation model is researched in a shot time to analyze the broad area that consists of mountains. Due to the Sommerfeld - Norton model which is used broadly the middle frequency propagation model to analyze the broad area in a short time is proposed introducing the newly attenuation parameter of the experimental results on the basis of actual experiments at the mountain configuration regardless of the area of mountain, plane, sea etc.

  • PDF

Quench propagation in resistive SFCL (저항형 초전도 한류기에서의 퀀치 전파)

  • 김혜림;현옥배;최효상;황시돌;김상준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.337-342
    • /
    • 2000
  • We fabricated resistive superconducting fault current limiters based on YB $a_{2}$/C $u_{3}$/ $O_{7}$ thin films and investigated their quench propagation characteristics. The YB $a_{2}$/C $u_{3}$/ $O_{7}$ films was coated with a gold layer and patterned into 1 mm wide meander lines by photolithography. The quench was concluded to start locally and propagates until completed. The quench propagation characteristics were explained based on the heat transfer within the film as well as between the film and the surrounding liquid nitrogen. The quench completion time depended strongly on potential fault current amplitude and not significantly on fault angle which indicates that the quench propagation speed is affected more by heat dissipation rate than by fault current increase rate. The quench completion time was 1 msec at the fault current of 65 $A_{peak/{\ak}}$.

  • PDF

Imaging of Seismic Sources Using Time Reversal Wave Propagation (지진파 역행 전파를 이용한 지진원 영상화)

  • Sheen, Dong-Hoon;Baag, Chang-Eob;Hwang, Eui-Hong;Ryoo, Yong Gyu;Youn, Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.181-186
    • /
    • 2006
  • An imaging method of seismic sources using time-reversal wave propagation is presented. The method is based on the time-reversal invariance and the spatial reciprocity of the wave equation. Time-reversal wave propagation has been used to image anomalous features of a midium in medical imaging, non destructive testing and waveform tomography. Seismogram is the record whose energy is propagated from the seismic source. If time-reversed seismogram propagates back into the medium, seismic energy is concentrated at the origin time of the event and at the source location. In this work, a staggered-grid finite-difference method of the elastic wave equation is parallelized for 3-D wave propagation simulation. With numerical experiments, we show that the time-reversal imaging will enable us to explore the spatio-temporal history of complex earthquake.

  • PDF

AC Electrical Treeing Phenomena in an Epoxy System with Low-chlorine BDGE at Various Electric Field Frequencies

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.324-328
    • /
    • 2013
  • An alternating current (AC) electrical treeing phenomena in an epoxy system with low chlorine BDGE (1,4-butanediol diglycidyl ether) was studied in a needle-plate electrode arrangement. To measure the treeing propagation rate and breakdown time, a constant AC of 10 kV with three different electric field frequencies (60, 500, and 1,000 Hz) was applied to the needle-plate electrode specimen at $130^{\circ}C$ in aninsulating oil bath. The treeing propagation rate of the DGEBA/high-chlorine BDGE system was higher than that of the DGEBA/low-chlorine BDGE system and the breakdown time of the system with high-chlorine BDGE was lower than that of the system with low-chlorine BDGE. These results implied that chlorine had a negative effect on the electrical insulation property of the epoxy system. As the electric field frequency increased, the treeing propagation rate increased and the breakdown time decreased.

Influence of Input Parameters on Shock Wave Propagation in Quasi-3D Hydrodynamic Model (준3차원 동수역학 모형의 입력변수가 충격파 전파에 미치는 영향)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.112-116
    • /
    • 2017
  • Present study investigated the influence of time step size, turbulent eddy viscosity, and the number of layer on rapid and unsteady propagation of dam break flow. When the time step size had a value such that it resulted in Cr of 0.89, a significant numerical oscillation was observed in the vicinity of the wave front. Higher turbulent viscosity ensured smooth and mild slope of velocity and water stage compared with the flow behavior by no viscosity. The vertical velocity at the lower layer positioned near the bottom showed lower velocity compared with other layers.

Analysis of ultrasonic signals through media in transformer (변압기의 전달 매질에 따른 초음파 신호의 특성 분석)

  • Chin, Sang-Bum;Park, Hyun-Soo;Shin, Dong-Seok;Kwak, Hee-Ro;Kweon, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2057-2059
    • /
    • 1999
  • This paper describes the phenomena of the refraction and reflection when the ultrasonic signals generated by PD(Partial Discharge) in a transformer propagate through the boundary between insulating oil and the tank of the transformer. In this paper, considering the characteristic of the ultrasonic signal and the velocity of the propagation in medium, propagation time from PD source to sensor for incidence angle was calculated. As a result, it was found that the shortest time at specific angle exists. Taking into account the velocity of the propagation in medium, the shortest time with a computer was simulated. It was shown that the simulation was same as experimental result at a real PD source in the transformer.

  • PDF

Near-Infrared Light Propagation in an Adult Head Model with Refractive Index Mismatch

  • Kim, Seung-Hwan;Lee, Jae-Hoon
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.377-384
    • /
    • 2005
  • We investigate near-infrared light (NIR) propagation in a model of an adult head using an extensive Monte Carlo (MC) simulation. The adult head model is a four-layered slab which consists of a surface layer, a cerebrospinal fluid layer, a gray-matter layer, and a white-matter layer. We study the effects of a refractive index mismatch on the model, calculating the intensity of detected light, mean flight time, and partial mean flight time of each layer for various refractive indices of the cerebrospinal fluid layer as functions of source-detector spacing. The Monte Carlo simulation shows that the refractive index mismatch presents very rich results including rapidly decaying intensity of detected light and a peak and cross-over in the partial mean flight time with source-detector spacing. We also investigate spatial sensitivity profiles at various source-detector spacings, discussing the index mismatch effect on the model.

  • PDF

Simulation of Time Delay Communication algorithm In the Shallow Underwater Channel

  • Yoon, Byung-Woo;Eren Yildirim, Mustafa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The need of data transmission in oceans and other underwater mediums are increasing day by day, so as the research. The underwater medium is very different from that of air. Propagation of electromagnetic wave in water or underground is very difficult because of the conductivity of the propagation materials. In this case, we usually use acoustic signals as ultrasonic but, they are not easy to transfer long distance with coherent method because of time varying multipaths, Doppler effects and attenuations. So, we use non-coherent methods such as FSK or ASK to communicate between long distances. But, as the propagation speed of acoustic wave is very slow, BW of the channel is narrow. It is very hard to guaranty the enough speed for the transmission of digital image data. In previous studies, we proposed this data communication protocol theoretically. In this paper, an underwater channel is modeled and this protocol is tested in this channel condition. The results show that the protocol is 4-6 times faster than ASK. Some relations and results are shown depending on the data length, channel length, bit rate etc.

Analysis of Input Factors of DNN Forecasting Model Using Layer-wise Relevance Propagation of Neural Network (신경망의 계층 연관성 전파를 이용한 DNN 예보모델의 입력인자 분석)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1122-1137
    • /
    • 2021
  • PM2.5 concentration in Seoul could be predicted by deep neural network model. In this paper, the contribution of input factors to the model's prediction results is analyzed using the LRP(Layer-wise Relevance Propagation) technique. LRP analysis is performed by dividing the input data by time and PM concentration, respectively. As a result of the analysis by time, the contribution of the measurement factors is high in the forecast for the day, and those of the forecast factors are high in the forecast for the tomorrow and the day after tomorrow. In the case of the PM concentration analysis, the contribution of the weather factors is high in the low-concentration pattern, and that of the air quality factors is high in the high-concentration pattern. In addition, the date and the temperature factors contribute significantly regardless of time and concentration.