• Title/Summary/Keyword: Propagation time

Search Result 2,219, Processing Time 0.029 seconds

Using Field Programmable Gate Array Hardware for the Performance Improvement of Ultrasonic Wave Propagation Imaging System

  • Shan, Jaffry Syed;Abbas, Syed Haider;Kang, Donghoon;Lee, Jungryul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.389-397
    • /
    • 2015
  • Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of $100{\times}100mm^2$ with 0.5 mm interval) to 87.5% (scanning of $200{\times}200mm^2$ with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

A Study on EMG Pattern Recognition using Time Delayed Counter-Propagation Neural Network (TDCPN을 이용한 EMG 신호의 패턴 인식에 관한 연구)

  • Jung, In-Kil;Kwon, Jang-Woo;Jang, Young-Gun;Min, Hong-Ki;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.165-168
    • /
    • 1994
  • We proposed a new model of neural network, called Time Delay Counter-Propagation Neural network (TDCPN). This model is combined properly by the merits of Time Delay Neural Network (TDNN) structure and those of Counter - Propagation Neural network (CPN) learning rule, so that increase recognition rate but decrease total teaming time. And we use this model to simulate classification of EMG signals, and compare the recognition rate and teaming time with those of another neural network model. As a result of simulation, the proposed model is proved to be very effective.

  • PDF

Improvement of Time-Delay of the Analog Viterbi Decoder through Minimizing Parasitic Capacitors in Layout Design (아날로그 비터비 디코더에 있어서 기생 cap성분 최소화 layout 설계에 의한 신호전파 지연 개선)

  • Kim, In-Cheol;Kim, Hyun-Jung;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.196-198
    • /
    • 2007
  • A circuit design technique to reduce the propagation time is proposed for the analog parallel processing-based Viterbi decoder. The analog Viterbi decoder implements the function of the conventional digital Viterbi decoder utilizing the analog parallel processing circuit technology. The decoder is for the PR(1.2,2.1) signal of DVD. The benefits are low power consumption and less silicon occupation. In this paper, a propagation time reduction technique is proposed by minimizing the parasitic capacitance components in the layout design of the analog Viterbi decoder. The propagation time reduction effect of the proposed technique has been shown via HSPICE simulation.

  • PDF

Dynamic Stress Intensity Factors and Dynamic Crack Propagation Velocities in Polycarbonate WL-RDCB Specimen (WL-RDCB 시편의 동적 균열전파속도와 동적 응력확대계수)

  • 정석주;한민구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 1996
  • Dynamic fracture characteristics of Polycarbonate WL-RDCB specimen were investigated. The dynamic crack propagation velocities in these specimens were measured by using both high speed camera system and silver paint grid method developed and justified in the INHA Fracture Mechanics Laboratory. The measured crack propagation velocities were fed into the INSAMCR code(a dynamic finite element code which has been developed in the INBA Fracture Mechanics Laboratory) to extract the dynamic stress intensity factors. It has been confirmed that both dynamic crack arrest toughness and the static crack arrest toughness depend on both the geometry and the dynamic crack propagation velocity of specimens. The maximum dynamic crack propagation velocity of Polycarbonate WL-RDCB specimen was found to be dependent on the material property, geometry and the type of loading. The dynamic cracks in these Polycarbonate WL-RDCB specimens seemed to propagate in a successive manner, involving distinguished 'propagation-arrest-propagation-arrest' steps on the microsecond time scale. It was also found that the relat-ionship between dynamic stress intensity factor and dynamic crack propagation velocities might be represented by the typical '$\Gamma$'shape.

  • PDF

An Adaptive Relay Node Selection Scheme for Alert Message Propagation in Inter-vehicle Communication (차량간 통신에서 긴급 메시지 전파를 위한 적응적 릴레이 노드 선정기법)

  • Kim, Tae-Hwan;Kim, Hie-Cheol;Hong, Won-Kee
    • The KIPS Transactions:PartC
    • /
    • v.14C no.7
    • /
    • pp.571-582
    • /
    • 2007
  • Vehicular ad-hoc networks is temporarily established through inter-vehicle communication without any additional infrastructure aids. It requires a immediate message propagation because it mainly deals with critical traffic information such as traffic accidents. The distance-based broadcast scheme is one of the representative broadcast schemes for vehicular ad-hoc network. In this scheme, a node to disseminate messages is selected based on a distance from a source node. However, a message propagation delay will be increased if the relay nodes are not placed at the border of transmission range of the source node. In particular, when the node density is low, the message propagation delay is getting longer. In this paper, we propose a time-window reservation based relay node selection scheme. A node receiving the alert message from the source node has its time-window and randomly selects its waiting time within the given time-window range. A proportional time period of the given time-window is reserved in order to reduce the message propagation delay. The experimental results show that the proposed scheme has shorter message propagation delay than the distance-based broadcast scheme irrespective of node density in VANET. In particular, when the node density is low, the proposed scheme shows about 26% shorter delay and about 46% better performance in terms of compound metric, which is a function of propagation latency and network traffic.

Measurement of the Propagation Constant of a Power Cable Using a Two-Port Time-Domain Reflectometry Technique (Two-Port Time Domain Reflectometry 방법을 이용한 XLPE 전력용 케이블의 전파 특성 측정)

  • Shin, Dong Sik;Cho, Hyeon Dong;Park, Wee Sang;Yi, Sang-Hwa;Sun, Jong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.310-315
    • /
    • 2013
  • This paper presents a two-port time-domain reflectometry(TDR) measurement technique for extracting the complex propagation constant of a cross-linked polyethylene(XLPE) cable. For the extraction, a short pulse transmitted through the cable is measured in the time domain and analyzed in the frequency domain. The propagation constant of a 22.9 kV XLPE cable with a conductor area of 325 $mm^2$ is extracted up to a frequency of approximately 2.14 GHz. The $S_{21}$ measured using a network analyzer and the two-port TDR technique are compared for verification. As a result compared with previous TDR method, the upper possible frequency limit for extracting the propagation constant increases and the measurement error decreases.

Time Domain Response of Random Electromagnetic Signals for Electromagnetic Topology Analysis Technique

  • Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Electromagnetic topology (EMT) technique is a method to analyze each component of the electromagnetic propagation environment and combine them in the form of a network in order to effectively model the complex propagation environment. In a typical commercial communication channel model, since the propagation environment is complex and difficult to predict, a probabilistic propagation channel model that utilizes an average solution, although with low accuracy, is used. However, modeling techniques using EMT technique are considered for application of propagation and coupling analysis of threat electromagnetic waves such as electromagnetic pulses, radio wave models used in electronic warfare, local communication channel models used in 5G and 6G communications that require relatively high accuracy electromagnetic wave propagation characteristics. This paper describes the effective implementation method, algorithm, and program implementation of the electromagnetic topology (EMT) method analyzed in the frequency domain. Also, a method of deriving a response in the time domain to an arbitrary applied signal source with respect to the EMT analysis result in the frequency domain will be discussed.

A Study on Long-time Electrical Treeing Deterioration Properties According to High Frequency Voltage of Epoxy Resin (에폭시수지의 고전압 전원주파수 변화에 따른 장시간 전기적 트리잉 열화 특성연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1571-1577
    • /
    • 2013
  • Electrical tree structure is one of the most important influencing factors for electrical treeing characteristics in polymers. In this paper, we focused on the structure characteristics of electrical treeing in epoxy resins (original) insulation under different high-frequency voltages (60, 500, 1000Hz). Effects of voltage frequency on the ac electrical treeing phenomena in an epoxy resins were carried out in needle-plate electrode arrangement. To measure the treeing initiation and propagation, and the breakdown rate, constant AC of 10 kV with three different voltage frequencies (60, 500 and 1,000 Hz) was applied to the specimen in needle-plate electrode specimen at $30^{\circ}C$ of insulating oil bath. At 60 Hz, the treeing initiation time was 360 min and the propagation rate was $6.85{\times}10^{-4}mm/min$, and the morphology was dense branch type. As the voltage frequency increased, the treeing initiation time decreased and the propagation rate increased. At 1,000 Hz, the treeing initiation time was 0 min and the propagation rate was $7.81{\times}10^{-2}mm/min$, and the morphology was dense bush type.

Effect of PWHT on Variability of fatigue Crack Propagation Resitance in TIG Welded Al 6013-T4 Aluminum Alloy (TIG 용접된 Al6013-T4 알루미늄 합금에서 피로균열전파저항의 변동성에서의 PWHT의 영향)

  • Haryadi, Gunawan Dwi;Lee, Sang-Yeul;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • The experimental investigation focuses on an influence of artificial aging time in longitudinal butt welded Al 6013-T4 aluminum alloy on the fatigue crack growth resistance. The preferred welding processes for this alloy are frequently tungsten inert gas welding (TIG) process due to its comparatively easier applicability and better weldability than other gas metal arc welding. Fatigue crack growth tests were carried out on compact tension specimens (CT) in longitudinal butt TIG welded after T82 heat treatment was varied in three artificial aging times of 6 hours, 18 hours and 24 hours. Of the three artificial aging times, 24 hours of artificial aging time are offering better resistance against the growing fatigue cracks. The superior fatigue crack growth resistance preferred spatial variation of materials within each specimen in the Paris equation based on reliability theory and fatigue crack growth rate by crack length are found to be the reasons for superior fatigue resistance of 24 hours of artificial aging time was compared to other joints. The highest of crack propagation resistance occurs in artificial aging times of 24 hours due to the increase in grain size (fine grained microstructures).

Characteristic Analysis on Radio Propagation Path Loss Characteristics of Vertical Electric Dipole in Time Domain (시간영역에서 수직 다이폴의 전파경로손실 특성 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1558-1563
    • /
    • 2013
  • In this paper, we analyze the radio propagation path loss characteristics for the vertical electric dipole radiation over the perfect electric conductor(PEC) ground plane. Most research have been performed about the electromagnetic analysis of vertical electric dipole in free space for time domain or frequency domain. But this paper present the radio propagation path loss over PEC ground plane in time domain under the assumption of the vertical electric dipole as a base station. From the simulated results, the ground plane effect can change the location of near field from transmitting antenna and the transient responses at mobile are calculated. The results of this paper can be applied to surface radar or signal processing applications.