SWP(Stochastic Wave Propagation: 확률파장전파) 모형은 Cellular Automata(CA) 이론을 기반으로한 간략한 차량모형을 이용하여 개별차량의 확률적 형태와 혼잡의 전파를 모사하고, 통계물리학을 기반으로 교통류를 거시적으로 해석한다. SWP모형은 이산적 시공간 구조와 정수형 자료를 이용한 프로그램 지향적 모형구조를 가지며 연산수행속도가 빨라 대규모 가로망의 실시간 시뮬레이션을 가능하게 하였다. 그러나 비현실적인 충돌회피과정으로 인한 자연발생적 혼잡(Spontaneous jam)의 형성 때문에 미시적으로는 혼잡내에서 잠금현상(Lockup)이 발생하여 혼잡내 차량의 저속을 설명할 수 없고, 거시적으로는 혼잡의 밀도와 전파속도를 설명하기 어렵다는 한계를 가지고 있다. 본 연구에서는 비현실적인 차량의 정지과정을 보다 현실적으로 모사하기 위한 정지조작규칙(SMR: Stopping Maneuver Rule)과 혼잡내에서 차량의 낮은 가속을 설명하기 위한 저가속규칙(LAR: Low Acceleration Rule)을 기존의 SWP모형인 NaSch모형에 추가하였다. 이를 통해 미시적으로 보다 현실적인 차량의 정지과정을 모사하면서 혼잡내에서 잠금현상을 방지하고, 거시적으로 혼잡의 밀도와 전파속도를 설명함으로써 보다 다양하게 연속 교통류를 구현하는 모형을 구축하였다.
전통적인 2진 가산규칙은 올림수를 발생시키고 MSB까지 올림수 전달이 발생하므로 직렬가산을 수행한다. 따라서 2진 가산에서 올림수 전달은 광의 병렬성을 최대한으로 이용할 수가 없다. MSD 수체계를 사용한 평가산기는 전통적인 2진 가산에서 발생하는 연속적인 올림수 전달을 제한하도록 제안되었다. 그러나 MSD 수체계는 MSD의 3가지 디지트를 표현하기 위하여 3가지 다른 상태로 부호화해야 한다. 본 논문에서는 SS방법을 사용하여 2-비트 가산규칙에 근거한 광병렬 가산기의 구성을 제안한다.
The relationships among multi-dimensional data (such as medical examination data) with ambiguity and variation are difficult to explore. The traditional approach to building a data classification system requires the formulation of rules by which the input data can be analyzed. The formulation of such rules is very difficult with large sets of input data. This paper first describes two classification approaches using back-propagation (BP) neural network and Mahalanobis distance (MD) classifier, and then proposes two classification approaches for multi-dimensional feature selection. The first one proposed is a feature selection procedure from the trained back-propagation (BP) neural network. The basic idea of this procedure is to compare the multiplication weights between input and hidden layer and hidden and output layer. In order to simplify the structure, only the multiplication weights of large absolute values are used. The second approach is Mahalanobis-Taguchi system (MTS) originally suggested by Dr. Taguchi. The MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric. We combine the automatic thresholding with MD: it can deal with a reduced model, which is the focus of this paper In this work, two case studies will be used as examples to compare and discuss the complete and reduced models employing BP neural network and MD classifier. The implementation results show that proposed approaches are effective and powerful for the classification.
인터넷을 사용하는 사람들에게 그들의 관심사와 부합하는 웹 페이지를 제공하는 것은 매우 중요하다. 이러한 관점에서 본 논문은 각 웹 페이지의 주제와 연관된 정도를 계산하여 웹 페이지 군(cluster)을 형성하며, 단어빈도/문서빈도 엔트로피(entropy) 및 컴파일된 규칙을 이용하여 수집된 웹 페이지를 정제하는 주제 기반 웹 수집기를 제안한다. 실험을 통하여 주제 기반 웹 수집기에 대한 분류의 정확성, 수집의 효율성 및 수집의 일관성을 평가하였다. 첫째, C4.5, 역전패(back propagation) 및 CN2 기계학습 알고리즘으로 컴파일한 규칙을 이용하여 실험한 웹 수집기의 분류 성능은 CN2를 사용한 분류 성능이 가장 우수 하였으며, 둘째, 수집의 효율성을 측정하여 각 범주별로 최적의 주제 연관 정도에 대한 임계값을 도출할 수 있었다. 마지막으로, 제안한 수집기의 수집정도에 대한 일관성을 평가하기 위하여 서로 다른 시작 URL을 사용하여 수집된 웹 페이지들의 중첩정도를 측정하였다. 실험 결과에서 제안한 주제 기반 웹 수집기가 시작 URL에 큰 영향을 받지 않고 상당히 일관적인 수집을 수행함을 알 수 있었다.
In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. To express the various and complex behavior of nonlinear system, we combine multiple model method with hierachical prioritized structure, and the mountain clustering technique is used in partitioning of system. TSK rule structure is adopted to form the fuzzy rules, and Back propagation algorithm is used for learning parameters in consequent parts of the rules. Also we soften the paradigm of Mamdani's inference mechanism by using Yager's S-OWA operators. Computer simulations are performed to verify the effectiveness of the proposed method.
한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.453-458
/
1998
In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. So as to handle a variety of nonlinearity and reflect the degree of confidence in the informations about system, we combine multiple model method with hierarchical prioritized structure. The mountain clustering technique is used in partition of system, and TSK rule structure is adopted to form the fuzzy rules. Back propagation algorithm is used for learning parameters in the rules. Computer simulations are performed to verify the effectiveness of the proposed method. It is useful for the treatment fo the nonlinear system of which the quantitative math-approach is difficult.
This paper introduces the application of evolutionary fuzzy modeling (EFM) in constructing global function approximations to subsequent use in non-gradient based optimizations strategies. The fuzzy logic is employed for express the relationship between input training pattern in form of linguistic fuzzy rules. EFM is used to determine the optimal values of membership function parameters by adapting fuzzy rules available. In the study, genetic algorithms (GA's) treat a set of membership function parameters as design variables and evolve them until the mean square error between defuzzified outputs and actual target values are minimized. We also discuss the enhanced accuracy of function approximations, comparing with traditional response surface methods by using polynomial interpolation and back propagation neural networks in its ability to handle the typical benchmark problems.
In this paper, the neuro-fuzzy inferene system for the effective object recognition is studied. The proposed neuro-fuzzy inference system combines learning capability of neural network with inference process of fuzzy theory, and the system executes the fuzzy inference by neural network automatically. The proposed system consists of the antecedence neural network, the consequent neural network, and the fuzzy operational part, For dissolving the ambiguity of recognition due to input variance in the neuro-fuzzy inference system, the antecedence’s fuzzy proposition of the inference rules are automatically produced by error back propagation learining rule. Therefore, when the fuzzy inference is made, the shape of membership functions os adaptively modified according to the variation. The antecedence neural netwerk constructs a separated MNN(Model Classification Neural Network)and LNN(Line segment Classification Neural Networks)for dissolving the degradation of recognition rate. The antecedence neural network can overcome the limitation of boundary decisoion characteristics of nrural network due to the similarity of extracted features. The increased recognition rate is gained by the consequent neural network which is designed to learn inference rules for the effective system output.
In this study, a Self-learning Neural-Fuzzy Networks is presented, Because of the fuzzy controller property, the designing problems of fuzzy if-then rules, membership functions and inference methods are very complex task. Thus in this paper we proposed the Neural-Fuzzy Networks composed by Sugeno and Takagi's fuzzy inference method and learned by using temporal back propagation algorithm. The proposed method can refine automatically the fuzzy if-then rules without human expert's knowledges. The induction motor servo system is used to demonstrate the effectiveness of the proposed control scheme and the feasibility of the acquired fuzzy controller. All results are supported by simulation.
In this paper, an adaptive workflow management system, called K-WFMS, is proposed. The K-WFMS integrates database system and knowledge-based system to automate business processes that are executed with complex and various business rules such as task scheduling, role resolution, and exception handling rules. The K-WFMS is adaptable in the sense that it allows its users to change workflow schema in the course of workflow execution as well as it provides rule-based modeling constructs to handle predictable exceptions during workflow modeling. The overall architecture and implementation of K-WFMS are explained, and the change propagation mechanism to maintain validity of workflow model is suggested.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.