• Title/Summary/Keyword: Propagation Delay

Search Result 532, Processing Time 0.028 seconds

Propagation Delay Modeling and Implementation of DGPS beacon signal over the Spherical Earth

  • Yu, Dong-Hui;Weon, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.295-299
    • /
    • 2007
  • This paper presents the ASF(Additional Secondary Factor) modeling of DGPS beacon signal. In addition to DGPS's original purpose, the feasibility to utilize DGPS system for timing and navigation has been studied. For timing and navigation, the positioning system must know the accurate time delay of signal traveling from the transmitter to receiver. Then the delay can be used to compute the user position. The DGPS beacon signal transmits the data using medium frequency, which travels through the surface and cause the additional delay rather than the speed of light according to conductivities and elevations of the irregular terrain. We introduce the modeling of additional delay(ASF) and present the results of implementation. The similar approach is Locan-C. Loran-C has been widely used as the maritime location system and was enhanced to E-Loran(Enhanced Loran). E-Loran system uses the ASF estimation method and is able to provide the more precise location service. However there was rarely research on this area in Korea. Hence, we introduce the ASF and its estimation model. With the comparison of the same condition and data from the original Monteath model and ASF estimation data of Loran system respectively, we guarantee that the implementation is absolutely perfect. For further works, we're going to apply the ASF estimation model to Korean DGPS beacon system with the Korean terrain data.

Time-Delay Estimation in the Multi-Path Channel based on Maximum Likelihood Criterion

  • Xie, Shengdong;Hu, Aiqun;Huang, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1063-1075
    • /
    • 2012
  • To locate an object accurately in the wireless sensor networks, the distance measure based on time-delay plays an important role. In this paper, we propose a maximum likelihood (ML) time-delay estimation algorithm in multi-path wireless propagation channel. We get the joint probability density function after sampling the frequency domain response of the multi-path channel, which could be obtained by the vector network analyzer. Based on the ML criterion, the time-delay values of different paths are estimated. Considering the ML function is non-linear with respect to the multi-path time-delays, we first obtain the coarse values of different paths using the subspace fitting algorithm, then take them as an initial point, and finally get the ML time-delay estimation values with the pattern searching optimization method. The simulation results show that although the ML estimation variance could not reach the Cramer-Rao lower bounds (CRLB), its performance is superior to that of subspace fitting algorithm, and could be seen as a fine algorithm.

Path Loss and Delay Characteristics According to Various Antennas at 2.45GHz in Subway Tunnel Environment (지하철 터널 환경에서 다양한 안테나에 따른 2.45GHz 대역의 경로손실 및 지연 특성)

  • Kong Min-Han;Park Noh-Joon;Kang Young-Jin;Song Moon-Kyou
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.162-168
    • /
    • 2006
  • Understanding of propagation characteristics is very important for the wireless communication system design and wireless communication service construction. In this paper, propagation characteristics is measured and analyzed at 2.45Ghz frequency band under curved subway tunnel environment. We constituted channel measurement system with sliding correlation and five different kind of antennas. The purpose of five different type of antennas is to compare propagation characteristics according to beam shape of antennas. The path loss under tunnel environment is average $4.38^{\sim}14.41dB$ lower than free space and circular polarization antenna marked smallest path loss. Also, path loss is smallest when the receiver antenna located outside of tunnel in th curved section. 90% of delay components of all antennas measured within 20ns and directional antenna has more wide coherence bandwidth than omni-directional antenna. According to measured result, when we consider path loss and delay characteristics, circular polarization antenna is most suitable under tunnel environment.

Reducing False Alarm and Shortening Worm Detection Time in Virus Throttling (Virus Throttling의 웜 탐지오판 감소 및 탐지시간 단축)

  • Shim Jae-Hong;Kim Jang-bok;Choi Hyung-Hee;Jung Gi-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.6 s.102
    • /
    • pp.847-854
    • /
    • 2005
  • Since the propagation speed of the Internet worms is quite fast, worm detection in early propagation stage is very important for reducing the damage. Virus throttling technique, one of many early worm detection techniques, detects the Internet worm propagation by limiting the connection requests within a certain ratio.[6, 7] The typical throttling technique increases the possibility of false detection by treating destination IP addresses independently in their delay queue managements. In addition, it uses a simple decision strategy that determines a worn intrusion if the delay queue is overflown. This paper proposes a two dimensional delay queue management technique in which the sessions with the same destination IP are linked and thus a IP is not stored more than once. The virus throttling technique with the proposed delay queue management can reduce the possibility of false worm detection, compared with the typical throttling since the proposed technique never counts the number of a IP more than once when it chicks the length of delay queue. Moreover, this paper proposes a worm detection algorithm based on weighted average queue length for reducing worm detection time and the number of worm packets, without increasing the length of delay queue. Through deep experiments, it is verified that the proposed technique taking account of the length of past delay queue as well as current delay queue forecasts the worn propagation earlier than the typical iuぉ throttling techniques do.

Channel Estimation Techniques for OFDM-based Cellular Systems with Transparent Multi-hop Relays (트랜스패런트 다중 홉 릴레이를 갖는 OFDM 기반 셀룰러 시스템을 위한 채널 추정 기법)

  • Woo, Kyung-Soo;Yoo, Hyun-Il;Kim, Yeong-Jun;Lee, Hee-Soo;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.813-819
    • /
    • 2007
  • In this paper, the effect of a propagation delay resulting from the use of an OFDM-based cellular system with a transparent mobile multi-hop relay(MMR) is initially analyzed. Then, channel estimation techniques, a least square(LS) method and a minimum mean square error(MMSE) method, for the OFDM systems with throughput enhancement(TE) MMR or cooperative MMR are proposed. The proposed channel estimation techniques can overcome the performance degradation caused by the propagation delay in TE MMR or cooperative MMR systems. It is demonstrated by computer simulation that the proposed channel estimation techniques for OFDM systems with transparent MMR are superior to the conventional techniques in terms of mean square error(MSE) and bit error rate(BER).

Characterization of Body Shadowing Effects on Ultra-Wideband Propagation Channel

  • Pradubphon, Apichit;Promwong, Sathaporn;Chamchoy, Monchai;Supanakoon, Pichaya;Takada, Jun-Ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.219-222
    • /
    • 2004
  • There are several factors that disturb an Ultra-Wideband (UWB) radio propagation in an indoor environment such as path loss, shadowing and multipath fading. These factors directly affect the quality of the received signal. In this paper, we investigated the influence of the human body shadowing on UWB propagation based on measured wireless channel in an anechoic chamber. The characteristics of the UWB channel including the transmitter and the receiver antenna effects are acquired over the frequency bandwidth of 3${\sim}$11 GHz. The major factors such as the power delay profile (PDP), the angular power distribution (APD), the pulse distortion and the RMS delay spread caused by the human body shadowing are presented.

  • PDF

The Indoor Propagation Modeling for Indoor Wireless LAN Service (실내 무선 랜 서비스를 위한 실내 전파 모델링)

  • 김진웅;김기홍;윤영중;석재호;임재우;신용섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.426-435
    • /
    • 2002
  • In this paper we present an indoor propagation model for indoor wireless LAN service in the ISM band. We primarily use a 3D ray tracing as well as a patch scattering model in order to take into account the indoor fixtures. Therefore input parameters such as indoor environment parameters and antenna's types, polarizations are considered. As the results, we present fading characteristics and rms delay spread from time delay spread. In order to investigate the accuracy of the presented model, comparisons of predictions with measurement and simulations are performed in indoor wireless LAN service environments. The results show that measurements and simulations are very similar. Therefore in this paper, the effect of presented indoor propagation model is confirmed.

Multiple-Valued Logic Multiplier for System-On-Panel (System-On-Panel을 위한 다치 논리 곱셈기 설계)

  • Hong, Moon-Pyo;Jeong, Ju-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.104-112
    • /
    • 2007
  • We developed a $7{\times}7$ parallel multiplier using LTPS-TFT. The proposed multiplier has multi-valued logic 7-3 Compressor with folding, 3-2 Compressor, and final carry propagation adder. Architecture minimized the carry propagation. And power consumption reduced by switching the current source to the circuit which is operated in current mode. The proposed multiplier improved PDP by 23%, EDP by 59%, and propagation delay time by 47% compared with Wallace Tree multiplier.

Precision Improvement Technique of Propagation Delay Distance Measurement Using IEEE 1588 PTP (IEEE 1588 PTP를 이용한 전파 지연 거리 측정의 정밀도 향상 기법)

  • Gu, Young Mo;Boo, Jung-il;Ha, Jeong-wan;Kim, Bokki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.515-519
    • /
    • 2021
  • IEEE 1588 PTP is a precision time protocol in which two systems synchronize without the aid of GPS by exchanging packets including transmission/reception time information. In the time synchronization process, the propagation delay time can be calculated and the distance between the two systems can be measured using this. In this paper, we proposed a method to improve the distance measurement precision less than the modulation symbol period using the timing error information extracted from the preamble of the received packet. Computer simulations show that the distance measurement precision is proportional to the length of the preamble PN sequence and the signal-to-noise ratio.