• Title/Summary/Keyword: Projection scenarios

Search Result 84, Processing Time 0.027 seconds

An Agrometeorological Reference Index for Projecting Weather-Related Crop Risk under Climate Change Scenario (농작물의 기상재해 발생위험 판정기준 설정 및 지구 온난화에 따른 기준기상위험의 변화 전망)

  • Kim, Dae-jun;Kim, Jin-hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.162-169
    • /
    • 2016
  • The agrometeorological reference index means 'the agrometeorological damage possibility' or the possibility of the normal year climate condition to damage the crop cultivation in a certain region. It is a reference used to compare the cultivation risk of a crop by region. The global climate warming is expected to increase the winter temperature. At the same time, the frequency of extreme weather events will also increase. Therefore, people pay attention to the potential of low temperature-induced damages (e.g., frost damage and injury) to fruit trees under the future climate condition. However, simple damage projection based on climate conditions does not help the climate change adaptation in the practical aspect because the climate change affects the phenology of fruit trees as well. This study predicted the phenology of the pear, peach, and apple trees by using the climate change scenarios of major regions. Furthermore, low temperature induced agrometeorological reference indices were calculated based on the effects of temperature on each plant growth stage to predict the damage possibility. It was predicted that the breaking rest would delay more in the future while the bud-burst date and flowering date will be earlier. In Daegu, Jeonju, and Mokpo, the breaking rest delayed more as time passed. The bud-burst date and flowering date of Seoul and Incheon regions were later than other regions. Seoul and Incheon showed a similar pattern, while Daegu and Jeonju revealed a similar pattern. Busan and Mokpo also showed a similar pattern. All regions were safe from the frost damage during the dormancy period. However, plants were vulnerable to frost damage between the breaking rest and the bud-burst period. Regions showed different frost damage patterns between the bud-burst period and the flowering period. During the bud-burst and flowering period, the risk level decreased in general, although the risk of some areas tended to increase.

Future Projection in Inflow of Major Multi-Purpose Dams in South Korea (기후변화에 따른 국내 주요 다목적댐의 유입량 변화 전망)

  • Lee, Moon Hwan;Im, Eun Soon;Bae, Deg Hyo
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.107-116
    • /
    • 2019
  • Multi-purpose dams in Korea play a very important role in water management such as supplying water for living, industrial water, and discharging instream flow requirement to maintain the functions of river. However, the vulnerability of dam water supply has been increased due to extreme weather events that are possible linked to climate change. This study attempts to project the future dam inflow of six multi-purpose dams by using dynamically downscaled climate change scenarios with high resolution. It is found that the high flows are remarkably increased under global warming, regardless of basins and climate models. In contrast, the low flows for Soyangang dam, Chungju dam, and Andong dam that dam inflow are originated from Taebaek mountains are significantly decreased. On the other hand, while the low flow of Hapcheon dam is shown to increase, those of Daecheong and Sumjingang dams have little changes. But, the low flows for future period have wide ranges and the minimum value of low flows are decreased for all dams except for Hapcheon dam. Therefore, it is necessary to establish new water management policy that can respond to extreme water shortages considering climate change.

Research and Development of Interactive Exhibition Contents for 'Sound Light' Exhibition Space in Science Museum (과학관 '소리 빛' 전시공간, 체험형 인터랙션 전시 콘텐츠 연구 개발)

  • Kim, Tae-Wook;Park, Nam-Ki
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.137-144
    • /
    • 2020
  • Based on the basic concepts and roles of the Science Museum, the research and development of the "Sound Light" interaction exhibition contents and experience exhibition space aimed at providing the exhibition, education and experience of scientific principle directly related to daily life will be implemented in the "Sound Light" exhibition space of the Gwangju National Science Museum. The scope of the research is to define the conditions and elements of the museum's hands-on exhibition by examining the case and status of the existing science museum's experience-type content prior research, and research and development of experience-type exhibition scenarios and contents for children based on them. The results of this research and development content are firstly developed with the theme of light and sound as interactive hologram experience content. Second, by multi-faceted media facade through projection mapping by multiple projectors, visual wide and spectacular screen composition and animation are realized. Third, visitors-oriented exhibitions and experiences that can interact with visitors by moving various colors and sounds together. Finally, interactive content is provided through hologram interfaces through hologram screens to encourage active participation of many visitors in viewing rather than simply delivering exhibition information and to promote revisiting the exhibition. Through a series of studies, it was possible to research and develop contents and experience exhibition spaces with theme park characteristics, which are the trend of science museums.

High-Precision and 3D GIS Matching and Projection Based User-Friendly Radar Display Technique (3차원 GIS 정합 및 투영에 기반한 사용자 친화적 레이더 자료 표출 기법)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lee, Dong-Ryul;Lim, Sanghun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1145-1154
    • /
    • 2014
  • In recent years, as frequency and intensity of severe weather disasters such as flash flood have been increasing, providing accurate and prompt information to the public is very important and needs of user-friendly monitoring/warning system are growing. This paper introduces a method that re-produces radar observations as multimedia contents and applies reproduced data to mesh-up services. In addition, a accurate GIS matching technique to help to track the exact location going on serious atmospheric phenomena is presented. The proposed method create multimedia contents having structures such as two dimensional images, vector graphics or three dimensional volume data by re-producing various radar variables obtained from a weather radar. After then, the multimedia formatted weather radar data are matched with various detailed raster or vector GIS map platform. Results of simulation test with various scenarios indicate that the display system based on the proposed method can support for users to figure out easily and intuitively routes and degrees of risk of severe weather. We expect that this technique can also help for emergency manager to interpret radar observations properly and to forecast meteorological disasters more effectively.

The Impact of Climate Changes on Ski Industries in South Korea - In the Case of the Yongpyong Ski Resort - (기후변화가 우리나라의 스키 산업에 미치는 영향 -용평 스키장을 사례로-)

  • Heo, In-Hye;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.715-727
    • /
    • 2008
  • This study analyzed changes on the best condition of temperature and relative humidity for making artificial snows in the Yongpyong Ski Resort using data from Daegwallyeong. Depth of snowfall and snowfall days have decrease since 1990s. If the Yongpyong Ski Resort has only to depend on natural snows, it would be difficult to make and maintain ski slope. There are two times of snowmaking during ski seasons: one is the first snowmaking (October-November) for opening ski slopes and the other is the reinforcement of snowmaking (December-March) for maintaining snow quality during the seasons. Days having the best condition for the first snowmaking (daily minimum temperature below $-1^{\circ}C$ and daily average relative humidity 60 to 80 percent) decreased after 1970s. Days having the best condition for the reinforcement of snowmaking also decreased. While temperature changes are more evident than humidity changes for the first snowmaking, humidity changes are more obvious than change of temperature for the reinforcement of snowmaking. In the future climate projection by A1B scenarios, the length of ski seasons projected to decrease a 10 to 40 percent against the period of 1973-2008. The climate condition for the snowmaking projected to be poor, especially the due to increase of temperature.

A study on the regional climate change scenario for impact assessment on water resources (수자원 영향평가에 활용 가능한 지역기후변화 시나리오 연구)

  • Im, Eun-Soon;Kwon, Won-Tae;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.1043-1056
    • /
    • 2006
  • Our ultimate purpose is to investigate the potential change in regional surface climate due to the global warming and to produce higher quality regional surface climate information over the Korean peninsula for comprehensive impact assessment. Toward this purpose, we carried out two 30-year long experiments, one for present day conditions (covering the period 1971-2000) and one for near future climate conditions (covering the period 2021-2050) with a regional climate model (RegCM3) using a one-way double-nested system. In order to obtain the confidence in a future climate projection, we first verify the model basic performance of how the reference simulation is realistic in comparison with a fairly dense observation network. We then examine the possible future changes in mean climate state as well as in the frequency and intensity of extreme climate events to be derived by difference between climate condition as a baseline and future simulated climate states with increased greenhouse gas. Emphasis in this study is placed on the high-resolution spatial/temporal aspects of the climate change scenarios under different climate settings over Korea generated by complex topography and coastlines that are relevant on a regional scale.

Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models (GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망)

  • Bae, Deg-Hyo;Jung, Il-Won;Lee, Byung-Ju;Lee, Moon-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • The objective of this study is to examine the climate change impact assessment on Korean water resources considering the uncertainties of Global Climate Models (GCMs) and hydrological models. The 3 different emission scenarios (A2, A1B, B1) and 13 GCMs' results are used to consider the uncertainties of the emission scenario and GCM, while PRMS, SWAT, and SLURP models are employed to consider the effects of hydrological model structures and potential evapotranspiration (PET) computation methods. The 312 ensemble results are provided to 109 mid-size sub-basins over South Korean and Gaussian kernel density functions obtained from their ensemble results are suggested with the ensemble mean and their variabilities of the results. It shows that the summer and winter runoffs are expected to be increased and spring runoff to be decreased for the future 3 periods relative to past 30-year reference period. It also provides that annual average runoff increased over all sub-basins, but the increases in the northern basins including Han River basin are greater than those in the southern basins. Due to the reason that the increase in annual average runoff is mainly caused by the increase in summer runoff and consequently the seasonal runoff variations according to climate change would be severe, the climate change impact on Korean water resources could intensify the difficulties to water resources conservation and management. On the other hand, as regards to the uncertainties, the highest and lowest ones are in winter and summer seasons, respectively.

Low-Flow Projection according to the Actual Evapotranspiration scenarios under the Climate Change -Chungju Dam Case- (기후변화 실제증발산 시나리오에 따른 갈수량전망 - 충주댐 사례 -)

  • Sun, HoYoung;Kang, BooSik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.104-104
    • /
    • 2018
  • 이수안전도의 기준이 되는 갈수량에 대해 기후변화 시나리오에 따른 전망을 제시하였다. 충주 댐 유역을 대상으로 기준기간(1986~2000년)에서의 기상청의 관측 기상자료와 IPCC 보고서의 RCP 4.5/8.5 시나리오를 대상으로 CMIP5(Coupled Model Intercomparison Project Phase 5)에서 제공하는 기후변화 자료 중 5개의 모델(ACCESS1.3 CanESM2, CNRM-CM5, GFDL-ESM2G, HadGEM2-AO)의 기준기간과 미래기간(2011~2100년)의 기상자료를 수집하였다. 기후변화 자료는 정상성/비정상성 분위사상법과 베이지안 모델 평균기법을 통해 불확실성과 통계적 오차를 저감하였다. 미래기간에서, 강우는 RCP 4.5에서 1.74mm/year, RCP 8.5에서 3.22mm/year, 실제증발산은 RCP 4.5에서 1.09mm/year, RCP 8.5에서 1.78mm/year의 증가율을 보였다. 실제증발산을 입력자료로 활용할 수 있도록 IHACRES모델의 CMD(Catchment Moisture Deficit) 비선형 모듈의 매개변수를 변이하여 유효강우량 산정 과정을 개선하였다. 기준기간에서 관측유량자료와 IHACRES의 시뮬레이션을 통해 산정된 유량자료의 R-squared는 0.65이다. 기준기간에서의 매개변수를 고정하여 미래기간의 유량을 산정하고 유황분석을 통해 갈수량 전망하였다. 유량은 RCP 4.5에서 4.41MCM/year, RCP 8.5에서 9.66MCM/year의 증가율을 보였다. 갈수량은 RCP 4.5에서 0.30MCM/year, RCP 8.5에서 -0.47MCM/year의 증감율을 보였다. 연간 강수량 대비 실제증발산의 비율의 추세분석 결과, RCP 4.5에서는 홍수기에는 0.014%/year, 비홍수기에는 0.027%/year의 증가율을 보이며 거의 변화가 없는 추세를 확인할 수 있었다. RCP 8.5의 홍수기에는 -0.042%/year, 비홍수기에서는 0.167%/year의 증감율을 보이며 홍수기에는 실제증발산에 비해 강수량의 증가가 확연히 보였으며 비홍수기에는 강수량에 비해 실제증발산의 증가가 뚜렷이 확인되었다. RCP 8.5에서 비홍수기의 강수량 대비 실제증발산의 증가가 갈수량의 감소로 반영된 것을 확인할 수 있었다. 미래기간의 RCP 4.5/8.5에서 실제증발산의 증가로 인하여 강수량이 증가함에 따라 유입량이 증가함에도 불구하고 갈수량의 증가로 이어지지 않았다. 미래 갈수량의 감소는 하천의 건전성과 이수안전도의 위협이 될 수 있다.

  • PDF

Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo (함경북도 내 미래 알팔파 재배의 기후적합도 앙상블 전망)

  • Hyun Seung Min;Hyun Shinwoo;Kim Kwang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.2
    • /
    • pp.71-82
    • /
    • 2024
  • It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.

Future Changes in Global Terrestrial Carbon Cycle under RCP Scenarios (RCP 시나리오에 따른 미래 전지구 육상탄소순환 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Hong, Jinkyu;Seong, Hyunmin;Heo, Tae-kyung;Seol, Kyung-Hee;Lee, Johan;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2014
  • Terrestrial ecosystem plays the important role as carbon sink in the global carbon cycle. Understanding of interactions of terrestrial carbon cycle with climate is important for better prediction of future climate change. In this paper, terrestrial carbon cycle is investigated by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (HadGEM2-CC) that considers vegetation dynamics and an interactive carbon cycle with climate. The simulation for future projection is based on the three (8.5/4.5/2.6) representative concentration pathways (RCPs) from 2006 to 2100 and compared with historical land carbon uptake from 1979 to 2005. Projected changes in ecological features such as production, respiration, net ecosystem exchange and climate condition show similar pattern in three RCPs, while the response amplitude in each RCPs are different. For all RCP scenarios, temperature and precipitation increase with rising of the atmospheric $CO_2$. Such climate conditions are favorable for vegetation growth and extension, causing future increase of terrestrial carbon uptakes in all RCPs. At the end of 21st century, the global average of gross and net primary productions and respiration increase in all RCPs and terrestrial ecosystem remains as carbon sink. This enhancement of land $CO_2$ uptake is attributed by the vegetated area expansion, increasing LAI, and early onset of growing season. After mid-21st century, temperature rising leads to excessive increase of soil respiration than net primary production and thus the terrestrial carbon uptake begins to fall since that time. Regionally the NEE average value of East-Asia ($90^{\circ}E-140^{\circ}E$, $20^{\circ}N{\sim}60^{\circ}N$) area is bigger than that of the same latitude band. In the end-$21^{st}$ the NEE mean values in East-Asia area are $-2.09PgC\;yr^{-1}$, $-1.12PgC\;yr^{-1}$, $-0.47PgC\;yr^{-1}$ and zonal mean NEEs of the same latitude region are $-1.12PgC\;yr^{-1}$, $-0.55PgC\;yr^{-1}$, $-0.17PgC\;yr^{-1}$ for RCP 8.5, 4.5, 2.6.