• Title/Summary/Keyword: Projection Mapping

Search Result 193, Processing Time 0.024 seconds

Cartographic Characteristics of the 'Carte do Cassini' and Its Place in the Development of Cartography (카시니 지도의 지도학적 특성과 의의)

  • Jung In-Chul
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.375-390
    • /
    • 2006
  • The Carte do Cassini is the first accurate topographic map of an entire country and it influenced enormously in the development of cartography in other countries. The purpose of this paper is to examine the production process and characteristics of the Carte do Cassini, and to and the place of 'Carte de Cassini' in the development of cartography. For this, firstly, the background of French national topographic mapping is examined and scientific work of the Cassini family is resumed. Second, the map production process is considered; location and attribute data collection, copperplate printing, social and economic difficulties. Third, map characteristics such as map projection, sheet numbering system, positional accuracy, legend, typographies, and depiction of cartographic signs are explored. Finally, the influence of the Carte de Cassini on cartographic development and its historical meaning is discussed.

Robust Object Pose Estimation for Dynamic Projection Mapping (동적 프로젝션 맵핑을 위한 안정적 객체 자세 추정)

  • Kim, Sang-Joon;Byun, Young-Ju;Choi, Yoo-Joo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.105-106
    • /
    • 2018
  • 본 논문에서는 동적 프로젝션 맵핑을 구현하기 위하여 3차원 공간의 깊이 정보와 대상 객체의 색상영상에서의 특징점을 추출하여 3차원 공간상에서 움직이는 2차원 평면 객체의 자세를 안정적으로 추정하는 기법을 제안한다. 제안 기법은 타겟 이미지를 출력하여 타겟 이미지 보다 큰 평면 패널에 부착하고, 이 평면 패널을 3차원 공간상에서 움직이는 환경에서 타겟 이미지의 자세를 안정적으로 추정하기 위하여 고안되었다. 제안 기법에서는 우선 패널이 움직일 수 있는 깊이 영역을 지정하여 해당 깊이 영역에 존재하는 2차원 패널을 추출하고, 패널의 사각영역을 추출한다. 또한, 색상 영상에 SURF 알고리즘을 적용하여 2차원 평면상에 부착된 타겟 이미지의 영역을 색상 특징을 기반으로 함께 추출하여 패널의 사각 영역과 타겟 이미지의 상대적인 위치 정보를 추출한다. 셋업 단계에서 추출된 타겟 이미지의 상대적인 위치 정보를 이용하여, 조명의 변화에 의하여 순간적으로 타겟 이미지의 특징점 추적에 실패한 경우, 패널의 사각 영역에 의해 계산된 타겟 이미지의 상대적 위치 정보를 계산하여 자세 추정에 사용함으로써 움직이는 타겟 이미지의 3차원 자세를 안정적으로 추정할 수 있도록 하였다.

  • PDF

Future drought projection in Cheongmicheon watershed under SSP (SSP 시나리오에 따른 청미천 유역의 미래 가뭄 예측)

  • Kim, Jin Hyuck;Chae, Seung Taek;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.330-330
    • /
    • 2021
  • 본 연구에서는 새롭게 개발 중인 SSP 시나리오의 일단위 강수량과 온도 자료를 활용하여 청미천 유역의 미래 가뭄의 예측 및 분석을 실시하였다. SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5에 따른 새롭게 개발 중인 CMIP6 (Coupled Model Intercomparison Project) GCM (General Circulation Models) 중 ACCESS-ESM1.5(Australian Community Climate and Earth System Simulator model)를 이용하였다. GCM 자료는 Quantile Mapping 방법을 사용하여 편이보정 되었고, 유출분석은 SWAT(Soil and Water Assessment Tool) 모형을 사용하여 청미천 유역에 대해 수행하였다. 청미천 유역의 가뭄분석을 위해 기상학적 가뭄지수인 SPI(Standardized Precipitation Index)와 SPEI(Standardized Precipitation Evapotranspiration Index), 수문학적 가뭄지수인 SDI(Standardized Streamflow Index)를 산정하였다. 그 후, 시간에 따른 가뭄의 특성을 분석하기 위해 가까운 미래 (2025-2064)와 먼 미래 (2065-2100) 로 구분하여 분석을 진행하였다. 그 결과, 청미천 유역의 가뭄 발생은 SSP시나리오, 가뭄지수에 따라 차이점을 확인할 수 있었다. SSP 시나리오의 경우 SSP5-8.5에서 가장 심각한 가뭄이 발생하였다. 가뭄지수의 경우 강수만을 고려한 SPI는 먼 미래에 비해 가까운 미래에서 더욱 심각한 가뭄이 발생하였다. SDI의 경우 강수량의 변동이 일반적으로 하천의 흐름에 영향을 미치기에 SPI와 비슷한 양상을 나타내었다. SPEI의 경우 시간에 따른 기온상승으로 먼 미래에 심각한 가뭄이 발생하였다.

  • PDF

Realtime Video Visualization based on 3D GIS (3차원 GIS 기반 실시간 비디오 시각화 기술)

  • Yoon, Chang-Rak;Kim, Hak-Cheol;Kim, Kyung-Ok;Hwang, Chi-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • 3D GIS(Geographic Information System) processes, analyzes and presents various real-world 3D phenomena by building 3D spatial information of real-world terrain, facilities, etc., and working with visualization technique such as VR(Virtual Reality). It can be applied to such areas as urban management system, traffic information system, environment management system, disaster management system, ocean management system, etc,. In this paper, we propose video visualization technology based on 3D geographic information to provide effectively real-time information in 3D geographic information system and also present methods for establishing 3D building information data. The proposed video visualization system can provide real-time video information based on 3D geographic information by projecting real-time video stream from network video camera onto 3D geographic objects and applying texture-mapping of video frames onto terrain, facilities, etc.. In this paper, we developed sem i-automatic DBM(Digital Building Model) building technique using both aerial im age and LiDAR data for 3D Projective Texture Mapping. 3D geographic information system currently provide static visualization information and the proposed method can replace previous static visualization information with real video information. The proposed method can be used in location-based decision-making system by providing real-time visualization information, and moreover, it can be used to provide intelligent context-aware service based on geographic information.

  • PDF

Selection framework of representative general circulation models using the selected best bias correction method (최적 편이보정 기법의 선택을 통한 대표 전지구모형의 선정)

  • Song, Young Hoon;Chung, Eun-Sung;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.337-347
    • /
    • 2019
  • This study proposes the framework to select the representative general circulation model (GCM) for climate change projection. The grid-based results of GCMs were transformed to all considered meteorological stations using inverse distance weighted (IDW) method and its results were compared to the observed precipitation. Six quantile mapping methods and random forest method were used to correct the bias between GCM's and the observation data. Thus, the empirical quantile which belongs to non-parameteric transformation method was selected as a best bias correction method by comparing the measures of performance indicators. Then, one of the multi-criteria decision techniques, TOPSIS (Technique for Order of Preference by Ideal Solution), was used to find the representative GCM using the performances of four GCMs after the bias correction using empirical quantile method. As a result, GISS-E2-R was the best and followed by MIROC5, CSIRO-Mk3-6-0, and CCSM4. Because these results are limited several GCMs, different results will be expected if more GCM data considered.

Comparison Among Sensor Modeling Methods in High-Resolution Satellite Imagery (고해상도 위성영상의 센서모형과 방법 비교)

  • Kim, Eui Myoung;Lee, Suk Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1025-1032
    • /
    • 2006
  • Sensor modeling of high-resolution satellites is a prerequisite procedure for mapping and GIS applications. Sensor models, describing the geometric relationship between scene and object, are divided into two main categories, which are rigorous and approximate sensor models. A rigorous model is based on the actual geometry of the image formation process, involving internal and external characteristics of the implemented sensor. However, approximate models require neither a comprehensive understanding of imaging geometry nor the internal and external characteristics of the imaging sensor, which has gathered a great interest within photogrammetric communities. This paper described a comparison between rigorous and various approximate sensor models that have been used to determine three-dimensional positions, and proposed the appropriate sensor model in terms of the satellite imagery usage. Through the case study of using IKONOS satellite scenes, rigorous and approximate sensor models have been compared and evaluated for the positional accuracy in terms of acquirable number of ground controls. Bias compensated RFM(Rational Function Model) turned out to be the best among compared approximate sensor models, both modified parallel projection and parallel-perspective model were able to be modelled with a small number of controls. Also affine transformation, one of the approximate sensor models, can be used to determine the planimetric position of high-resolution satellites and perform image registration between scenes.

Intercomparison of uncertainty to bias correction methods and GCM selection in precipitation projections (강수량예측에서 편이보정방법과 GCM 선택에 대한 불확실성 비교)

  • Song, Young Hoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.249-258
    • /
    • 2020
  • Many climate studies have used the general circulation models (GCMs) for climate change, which can be currently available more than sixty GCMs as part of the Assessment Report (AR5). There are several types of uncertainty in climate studies using GCMs. Various studies are currently being conducted to reduce the uncertainty associated with GCMs, and the bias correction method used to reduce the difference between the simulated and the observed rainfall. Therefore, this study mainly considered climate change scenarios from nine GCMs, and then quantile mapping methods were applied to correct biases in climate change scenarios for each station during the historical period (1970-2005). Moreover, the monthly rainfall for the future period (2011-2100) is obtained from the RCP 4.5 scenario. Based on the bias-corrected rainfall, the standard deviation and the inter-quartile range (IQR) from the first to third quartiles were estimated. For 2071-2100, the uncertainty for the selection of GCMs is larger than that for the selection of bias correction methods and vice versa for 2011-2040. Therefore, this study showed that the selection of GCMs and the bias correction methods can affect the result for the future climate projection.

A Study on the Compositions and Applications of Video Solution for Small-sized Theater Performance:Focused on the Musical (소극장 공연에 적합한 영상 솔루션 구성과 활용방안 연구 : 뮤지컬 <트레이스 유(2018)>를 중심으로)

  • Kim, Kyu-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.8
    • /
    • pp.359-369
    • /
    • 2019
  • This research suggests video solutions and efficient implementations for low-budget performances. This study adopts Millumin as a mapping server, which reflects the character of small theatres with a lower budget that doesn't use more than four projectors in a show. By comparing pros and cons of media servers, the study discovers how to employ an appropriate server as well as to participate in a pre-video production stage, which increases the artistry of directing and reduces unnecessary graphics. Meanwhile, with the participation of an interpretive programmer, this study suggests a way to manage the rehearsal time and to increase the artistry of directing. In addition, this study analyses the relationship between the video's visual motive source in the story's development, crisis, climax, twist and the provided narrative based on "Trace U the musical (2018)", by this analyzation, the relationship between storytelling and the video is fully shown. A visual motive is related to the action of actors, the movement of dancers, the music, the lyrics and the lines. Furthermore, the provided narrative confirms that the existence of an actual relationship with the turning point of the plots, characters' emotion, suggestions of sub-plot and the twists of own story. In conclusion, it implies a video of small theatres can not be separated from the probability of the narrative.sh an efficient ad execution strategy that reflected the characteristics of mobile devices.

Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face (터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안)

  • Chuyen Pham;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.508-518
    • /
    • 2023
  • This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.

3D Stereo Display of Spatial Data from Various Sensors (다양한 센서로부터 획득한 공간데이터의 3D 입체 디스플레이)

  • Park, So-Young;Yun, Seong-Goo;Lee, Young-Wook;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.669-676
    • /
    • 2010
  • Visualization requires for effective analysis of the spatial data collected by various sensors. The best way to convey 3D digital spatial information which is modeling of the real world to the users, realistic 3D visualization and display technology. Since most of the display is based on 2D or 2.5D projection to the plane, there is limitation in representing real world in 3D space. In this paper, data from airborne LiDAR for topographic mapping, Flashi-LiDAR as emerging sensor with great potential to 3D data acquisition, and multibeam echo-sounder for underwater measurement, were stereoscopically visualized. 3D monitors are getting popular and could be information media and platform in geoinformatics. Therefore, study on creating 3D stereoscopic contents of spatial information is essential for new technology of stereo viewing systems.