• Title/Summary/Keyword: Projectile

Search Result 399, Processing Time 0.022 seconds

An Criterion to Minimize FE Mesh-Dependency in Concrete Plate under Impact Loading (충격하중을 받는 판형콘크리트 구조물의 요소의존성 최소화 기준식)

  • Kwak, Hyo-Gyoung;Gang, Han-Gul;Park, Lee-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.147-154
    • /
    • 2014
  • In the context of an increasing need for safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling high strain rate conditions with these material models, mesh dependency in the used finite element(FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. This paper introduces an criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC(Holmquist Johnson Cook) model is examined to trace sensitivity to the used FE mesh size. To coincide with the purpose of the perforation simulation with a concrete plate under a projectile(bullet), the residual velocities of projectile after perforation are compared. The analytical results show that the variation of residual velocity with the used FE mesh size is quite reduced and accuracy of simulation results are improved by applying a unique failure strain value determined according to the proposed criterion.

The Kinematic Analysis of Kasamatus in Vault (도마종목의 Kasamatsu 기술동작 분석)

  • Lee, Soon-Ho;Back, Jin-Ho;Kim, Young-Sun;Kong, Tae-Ung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.1-11
    • /
    • 2005
  • The study were to assess technical factors between the high score group and the low score group, from the subjects of 8 male national gymnasts, and to analyze the kinematical characteristic and main technical cause on technique of Kasamatsu movement on Vault. The result of this study is this. In case of horse contact time the high score group was swifter than low score group, and there was significant difference between the high score group and the low score group(<.01). On high score group the time of taking on from horse showed shorter than that of taking off from horse, while of the low score group the time of taking on the horse was similar to that of taking off from horse on the average. And in time of pre-flight the high score group on average the was 0.16sec shorter times than the low score group, and so there was significantly difference between groups(<.05). Also It is a characteristic that the high score group was short in horse contact time and longer in post-flight. In the horizontal distance of post-flight, the high score group was 0.11m longer than the low score group and there was significantly statistic difference between groups(<.05). In the vertical height of the cog in Post-flight's phrase, the high score group was 0.15m higher than the low score group and there was significantly statistic difference between groups(.<01). The horizontal velocity and vertical velocity in the event of taking on and off Beat board and Vault weren't significantly statistic differences between two groups. In the slow-down of average horizontal velocity during keeping contact with the beat board, the high score group was larger than the low score group. And in an increased average vertical velocity during keeping contact with the beat board, the high score group was even larger than the low score group. In the projectile angle of cog in taking off the beat board, 40.2deg., the angle of low score group and 39.5deg., the angle of high score group are nearly alike. In the projectile angle of cog in taking off the beat, the high score group showed 1.6Wt larger on average than the low score group. However the average reaction force on the board and Vault wasn't almost different between two groups, showed 0.3~0.6Wt larger in the high score group.

Performance Analysis of Adaptive SC/MRC Diversity Combining using in AWGN (AWGN환경에서 적응형 SC/MRC 다이버시티 컴바이너 성능분석)

  • Yun, Deok-Won;Huh, Sung-Uk;Kim, Chun-Won;Choi, Yong-Tae;Lee, Won-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.757-763
    • /
    • 2018
  • It is very difficult to achieve sufficient data rate and required quality of service due to the time-varying nature of the radio channel and various jammers such as path loss, delay, Doppler, shadowing and interference. Especially, the propagation path between the transmitting antenna and the tracking antenna mounted on the fuselage during the test and evaluation of the projectile system considered in this paper is based on the rapid movement of the projectile, the interference due to multipath fading due to the terrain, The propagation path may be blocked. In order to effectively improve the multipath fading occurring in the wireless communication system, a diversity combiner technique is required. In this paper, to derive the design and improvement schemes for the space diversity combiner technique among the diversity combiner schemes, the BER performance of maximum ratio combining (MRC) and selection combining (SC) In an adaptive SC / MRC diversity combiner that operates with MRC when it is lower than the specified threshold criterion when comparing the SNR between two signals received from the channel and operates with SC at high and combines the two received signals The BER performance of the system was compared and analyzed.

Two-Dimensional Wave Propagation Analysis of Impact Phenomena (이차원(二次元) 파전파(波傳波) 이론(理論)에 의한 충돌현상(衝突現狀) 해석(解析))

  • Lee, Sang Ho;Ahn, Byoung Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.245-255
    • /
    • 1994
  • A two-dimensional Lagrangian finite-difference computer program is developed for the wave propagation analysis of impact phenomena. The numerical scheme is the standard method originally proposed by Von Neuman and Richtmyer, using artificial viscosity to smooth shock fronts. The material model used in the study is the standard hydrodynamic-elastic-plastic relations with Von-Mises yield criterion. A test configuration consisted of a target and a projectile were calculated to understand the response of a colliding event. However, the computer code is in plane strain, the calculations were intended for generating the qualitative features of the model behaviors. Nevertheless, the computational results were consistent with the experimental observations and provided a rational basis to interpret the modes of failures.

  • PDF

Strain rate effect of steel-concrete composite panel indented by a hemispherical rigid body

  • Zhao, Weiyi;Wang, Lin;Yang, Guotao;Wang, Ziguo;Gao, Zepeng;Guo, Quanquan
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.703-710
    • /
    • 2020
  • This paper presents numerical and theoretical investigations on the strain rate in steel-concrete composite (SC) panels under low-velocity impact of a hemispherical rigid body. Finite element analyses were performed on five specimens with different loading rates. The impact energy was kept constant to eliminate its influence by simultaneously altering the velocity and mass of the projectile. Results show that the strain rate in most parts of the specimens was low and its influence on bearing capacity and energy dissipation was limited in an average sense of space and time. Therefore, the strain rate effect can be ignored for the analyses of global deformation. However, the strain rate effect should be considered in local contact problems. Equations of the local strain and strain rate were theoretically derived.

High Velocity Impact Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabric

  • Park, Yurim;Baluch, Abrar H.;Kim, YunHo;Kim, Chun-Gon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • The development of high performance fabrics have advanced body armor technology and improved ballistic performance while maintaining flexibility. Utilization of the shear thickening phenomenon exhibited by Shear Thickening Fluids (STF) has allowed further enhancement without hindering flexibility of the fabric through a process of impregnation. The effect of STF impregnation on the ballistic performance of fabrics has been studied for impact velocities below 700 m/s. Studies of STF-impregnated fabrics for high velocity impacts, which would provide a transition to significantly higher velocity ranges, are lacking. This study aims to investigate the effect of STF impregnation on the high velocity impact characteristics of Kevlar fabric by effectively dispersing silica nanoparticles in a suspension, impregnating Kevlar fabrics, and performing high velocity impact experiments with projectile velocities in the range of 1 km/s to compare the post impact characteristics between neat Kevlar and impregnated Kevlar fabrics. 100 nm diameter silica nanoparticles were dispersed using a homogenizer and sonicator in a solution of polyethylene glycol (PEG) and diluted with methanol for effective impregnation to Kevlar fabric, and the methanol was evaporated in a heat oven. High velocity impact of STF-impregnated Kevlar fabric revealed differences in the post impact rear formation compared to neat Kevlar.

A Numerical Study of the High-Velocity Impact Response of a Composite Laminate Using LS-DYNA

  • Ahn, Jeoung-Hee;Nguyen, Khanh-Hung;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • The failure of a Kevlar29/Phenolic composite plate under high-velocity impact from an fragment simulation projectile was investigated using the nonlinear explicit finite element code, LS-DYNA. The composite laminate and the impactor were idealized by solid elements, and the interface between the laminas was modeled as a tiebreak type in LS-DYNA. The interaction between the impactor and laminate was simulated using a surface-to-surface eroding contact algorithm. When the stress level meets the given failure criteria, the layer in the element is eroded. Numerical results were verified through existing test results and showed good agreement.

A study on friability test to assess the mechanical impact sensitivity of insensitive explosives (Friability 시험에 의한 둔감화약의 기계적 충격 감도 평가 연구)

  • 박정수;박희덕;김성호;이정관
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • We recently developed a friability test procedure, which will be used as one of substance tests for Extremely Insensitive Detonating Substances(EIDSs) in Test Series 7 of the United Nations. This test was intended to assess the susceptibility of insensitive explosives to the break-up as high strain rate and subsequent ignition characteristics of the deformed material. We designed an air gun system using the hydro code simulation. The projectile velocities of the gun were in good agreement with those predicted by the hydro code with an inert material. Three different types of explosives, melt castable Comp B, castable plastic bonded explosives(PBXs), and pressable PBXs were tested during the development of the test procedure. Two tastable PBXs, i.e. DXD-09 and DXD-10, which are currently under development as candidate formulations of EIDS were classified as EIDS, since test results with these formulations were far better than the criterion of the UN Test Series 7.

  • PDF

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

An Experimental Study on Installation of the Shielding Material to Reduce the Shock Noise of a Gun (화포소음 저감을 위한 차폐재 설치에 관한 실험적 연구)

  • Lee, Haesuk;Hong, Junhee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.453-461
    • /
    • 2016
  • The paper represents the experimental analysis of the shock noise of medium caliber guns when a projectile is passed through the shielding material. In the study, the shielding material was constructed and tested in three separate experiments. The shielding material was not installed for medium caliber gun in Case 1. A medium caliber gun was fully covered with shielding material in Case 2, and another one was put with shielding material near muzzle in Case 3. In each experiment, the experimental data was compared with each other. Results showed the firing shielding material achieved a significant noise reduction in $90^{\circ}$ to the noise source. Case 3 is confirmed to be better effective than Case 2 in the near field. But, the noise reduction in the far field is small in quantity due to the low frequency. The paper is considered that further study is necessary for the shielding material which can absorb a low frequency noise in the future.