• Title/Summary/Keyword: Project duration

Search Result 373, Processing Time 0.022 seconds

Cradle to Gate Emissions Modeling for Scheduling of Construction Projects

  • Sharma, Achintyamugdha;Deka, Priyanka;Jois, Goutam;Jois, Umesh;Tang, Pei
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.975-983
    • /
    • 2022
  • This paper presents an innovative way of integrating scheduling and project controls with the environmental impact of a construction project to track, monitor, and manage environmental emissions at the activity level. As a starting point, scheduling and project controls help monitor the status of a project to provide an assessment of the duration and sequence of activities. Additionally, project schedules can also reflect resource allocation and costs associated with various phases of a construction project. Owners, contractors and construction managers closely monitor tasks or activities on the critical path(s) and/or longest path(s) calculated through network based scheduling techniques. However, existing industry practices do not take into account environmental impact associated with each activity during the life cycle of a project. Although the environmental impact of a project may be tracked in various ways, that tracking is not tied to the project schedule and, as such, generally is not updated when schedules are revised. In this research, a Cradle to Gate approach is used to estimate environmental emissions associated with each activity of a sample project schedule. The research group has also investigated the potential determination of scenarios of lowest environmental emissions, just as project managers currently determine scenarios with lowest cost or time. This methodology can be scaled up for future work to develop a library of unit emissions associated with commonly used construction materials and equipment. This will be helpful for project owners, contractors, and construction managers to monitor, manage, and reduce the carbon footprint associated with various projects.

  • PDF

Optimization of Estimating Duration of the Structural Frame for the High-rise Apartment Housing during the Winter season -Focusing on One Cycle Time Scheduling Mechanism of the Typical Floor- (동절기 아파트 골조공사의 적정공기 산정에 관한 연구 - 기준층 사이클 공정분석을 중심으로 -)

  • Bang Jong-Dae;Han Choong-Hee;Kim Sun-Kuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.170-178
    • /
    • 2004
  • Public construction companies have strictly followed a rule that they should not work in the wet area such as structural frame for a certain period during the winter season. It is usually known that the non-working period during the winter causes increase of the project duration, and the project cost escalation. Also, it makes negative effects on national economy because it reduces workers income. Therefore, the site work for the structural frame should be performed even during the whiter season. But the site work for the structural frame during that period cannot proceeds in the same way as during other periods, and requires a different method for estimating project duration. Through an analysis of time scheduling mechanism, actual working days are obtained for 1 cycle of typical floors in the structural frame during these periods, and non-working days of 5 years average are calculated based on calendar day using data of 5 years weather forecasts for that season. This study proposes an optimized way of estimating project duration for 1 cycle of typical floors in the structural frame during these periods. This estimating method uses the combined actual working days and non-working days of 5 years' average, and the estimated results are confirmed by being compared with field data. This study is expected to be used in estimating the construction duration of the structural frame during the winter season.

A study on the normal project duration development for the construction of multi-utility tunnel in the existing city (기존시가지의 공동구 건설을 위한 표준공기 산정에 대한 연구)

  • Lee, Seong-Won;Lee, Pil-Yoon;Byun, Yo-Seph;Cho, Choong-Yeun;Lee, Min-jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.677-685
    • /
    • 2018
  • In construction, schedule management is the basic but important step, for the effective schedule management, the preparation of the reasonable schedule table should be prioritized. In the design stage, the optimal construction period can be selected through comparison of various conditions and construction methods considering weather conditions and site characteristics. But, At the planning phase, it is difficult to select the effective method and calculate the proper construction period by the basic data(D/B) analysis. In this paper, the construction method considering characteristics of each type and conditions of existing city was selected. For the reasonable duration calculation, we analyzed the unit schedule for RC method for open type and Shield TBM method for tunnel type. The normal project duration of construction assuming of 1,200m of extension and every 200m of ventilation was prepared by integrating each unit schedule. It was analyzed that it took 893 days for the open type and 616 days for the tunnel type. The results of this study will help to make type selection and normal project duration more easily in the planning phase. If it is linked to the design stage, it will be easy to estimate the process and construction cost.

COST ANALYSIS OF STRUCTURAL PLAN FOR REDUCING FRAMEWORK CONSTRUCTION DURATION OF REINFORCED CONCRETE RESIDENTIAL BUILDINGS

  • Seon-Woo Joo;Moonseo Park;Hyun-Soo Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.493-498
    • /
    • 2009
  • Recently, the number of complex construction projects, such as high-density development and long-span mega structure construction, has been increasing globally. Therefore, the construction duration has become an even more important factor for success. Nevertheless, in domestic residential construction projects, it usually takes more time than twice as much as North American cases. The long construction duration causes a number of problems, for example growth of financial costs, fall in productivity, and weakness of competitiveness. If the framework construction duration can be shortened to 3 ~ 4 days, then it is also expected to complete the finish work of building in shorter duration, be led to reduce the entire construction duration, and eventually to save a great deal of indirect costs. For shortening the construction duration, previous researches pointed out that the development of simplified plan design should precedes. But, in reality, lack of experience of new design and innovative techniques tends to be the obstacle to wide adoption of the simplified plan design in construction fields. In this paper, a simplified structural plan design is proposed, and the construction cost is quantitatively compared between when traditional construction technique is applied to the traditional plan and when the duration-shortening key technique is applied to the developed plan.

  • PDF

Effects of Time Shortening on Project Cost in Housing Complex with Different Number of Layers (저층·고층 아파트가 혼합배치된 단지에서 공기단축이 건설사업비에 미치는 영향 분석)

  • Bang, Jong-Dae;Chun, Young-Soo;Jun, Myoung-Hoon;Kim, Sa-Rang;Lee, Do-Heun
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.415-421
    • /
    • 2012
  • In case of Korean housing complex, there became more mixed arrangement of buildings with different number of layers for a variety of urban skyline, recently. For example, around 33% of the construction sites of 'A' public corporation have gaps of more than 4 layers between high-rise buildings and low-rise ones in the same site, according to the survey. Generally, construction duration of the housing complex is estimated based on the layers of the highest building. Due to this baseline, whole construction duration could be extended so that the project cost could be increased. Therefore, framework duration of higher-rise buildings should be reduced to secure the feasibility of the project. On the other hands, these shortenings could adversely harm the feasibility in some cases because there are a wide range of combinations of the buildings with different number of layers in designing housing complex. Therefore, this study shows the results of analysis on effects of framework time shortening on the cost in housing complex project. Moreover, this could set the baseline of checking possibilities in condensing the construction duration of projects with buildings of different layers by supplying comprehensive database.

Identification of Factors Affecting Time and Cost Performance in Vietnam Construction Projects

  • Long, Le-Hoai;Lee, Young-Dai;Lee, Jun-Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.728-731
    • /
    • 2007
  • In-planned duration and cost at project closing are the two of criteria of successful project and successful project management. In Vietnam, regularly, construction projects are delayed and their costs are overrun. This research employed a questionnaire survey to elicit the causes of this situation by interviewing 87 Vietnamese construction experts. After processing data, 21 causes of delay and cost overruns appropriate with building and industrial project in construction stage were inferred and ranked. Spearman's rank correlation tests showed that there're no differences in the viewpoints between parties in project.

  • PDF

Applying Monte Carlo Simulation for Supporting Decision Makings in Software Projects (소프트웨어 프로젝트 의사결정 지원을 위한 몬테카를로 시뮬레이션의 활용)

  • Han, Hyuk-Soo;Kim, Cho-Yi
    • Journal of Information Technology Services
    • /
    • v.9 no.4
    • /
    • pp.123-133
    • /
    • 2010
  • There are many occasions on which the critical decisions should be made in software projects. Those decisions are basically related to estimating and predicting project parameters such as costs, efforts, and duration. The project managers are looking for methods to make better decisions. The decisions about project parameters are recommended to be performed based on historical data of Similar projects. The measures of the tasks in past projects may have different shapes of distributions. we need to add those measures to get a predicted project measures. To add measures with different shapes of distribution, we need to use Monte Carlo Simulation. In this paper, we suggest applying Monte Carlo Simulation for supporting decision makings in software project. We implemented best-fit case and scheduling estimations with Cristal Ball, a commercial product of Monte Carlo simulation and showed how the suggested approach supports those critical decision makings.

Integrated Planning Process Implementation Method Based on the Cost, Schedule, and Technical Performance (비용, 일정 및 기술적 성과를 고려한 통합 계획수립 프로세스 구현 방안)

  • You, Yi-Ju;Park, Young-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.100-108
    • /
    • 2007
  • The purpose of the research is to propose an integrated project planning process and its implementation method. Although there is increasing interest in the application of the Earned Value Management(EVM) method in the project management area, the progress and maturity of the technical performance have not been included in assessing the Earned Value. The main concept of the planning process is to use cost, schedule, as well as the technical performance in the assessment of the Earned Value Management for Military R&D project management practices. The resulting process can enhance the efficiency of the project work by eliminating the currently duplicated activities between traditional project planning process and the newly implemented Earned Value Management process and by shortening the early planning process duration of projects adopting EVM practices.

A TIME DETERMINATION MODEL INCORPORATING RISK MANAGEMENT BASED ON MALAYSIAN CASE STUDIES

  • Sim Nee Ting;Chung Thing Chong
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.642-648
    • /
    • 2009
  • Determining the total duration for a construction project is an integral part of project management in the construction industry. This is to ensure the project and all its associated activities can be carried out and completed within the time frame stipulated. There are several commonly used scheduling methods and techniques in project management, some of which involves manual calculation while others involve computer software. This paper looks into the various time determination methods, extracting out their differences and similarities. It also seeks to draw out the problems when determining time for projects, especially those encountered of case studies. Based on the results from the case studies, there were delays on certain projects even though time determination had been carried out rigorously prior to the commencement of the projects. This paper seeks to develop a time determination model, which incorporates risk management techniques into the calculations in order to improve the method for time estimation to minimize the chances of project delay.

  • PDF

Challenges and suggestions of resource planning for standardized concurrent construction

  • Chen, Xingbin;Li, Sining;Kim, Jung In;Fang, Yuan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.41-49
    • /
    • 2020
  • Concurrent construction offers considerable improvement for shorten the project duration of its production process. Therefore, standardized concurrent construction is widely applied in building construction projects. However, resources planning for standardized concurrent construction project is manually developed by construction manager. This practice is not effective since it is time-consuming and error-prone for managers to identify all project-specific information, distinguish different activity-resource types, interpret these types and analyze how they affect resource allocated on an ad hoc basis. Therefore, this research investigates the opportunity for leveraging activity modeling to enable automated resource planning for standardized concurrent construction during project development, with identifying the characteristics of construction activities under standardized concurrent planning and determining the activity-resources types that affects resource planning. Both will function as a basis for modeling these construction activities in a computer-interpretable manner and for automation in resource planning.

  • PDF