• Title/Summary/Keyword: Progressive wave

Search Result 78, Processing Time 0.023 seconds

Development of Free-form PALs for Correcting Wavefront Refraction (파면굴절력 교정을 위한 자유형상 누진가입도렌즈 개발)

  • Baarg, Saang-Bai;Jeong, Mee-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.50-59
    • /
    • 2010
  • In this paper, two kind of free-form progressive addition lenses (PALs) were designed with Zernike polynomial surface and anatomically accurate finite presbyopic schematic eyes which have aspheric cornea, aspheric GRIN crystalline lens, aspheric retina, and Gaussian apodization factor. Geometrical and diffraction MTFs were used for the optimization process in sequence. 5th orders of Zernike polynomials were used for the evaluation of progression zones of the two examples. The target MTF was set as 0.22 at 100 lp/mm which satisfies the standard visual resolution. These examples were fabricated with a CNC diamond turning machine controlled by slow tool servo (STS). After polishing process, the wavefront aberrations were measured with a laser interferometer on the ten test points across the progression zones and then compared with three current commercially available PALs on the optical performance. Astigmatic aberrations of the examples are very lower than the three selected PALs and have more increased stabilized progressive intermediate zones and near zones. It is expected to give better clear and comfortable distance, intermediate and near visions than other conventional PALs and to improve the adaptability of presbyopic patients to PALs.

Numerical Models of Water Wave with Parabolic and Hyperbolic Forms

  • Lee, Jong-Kyu;Lee, Chang-Hae
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.25-37
    • /
    • 1991
  • The numerical models of the parabolic equation, applicable only to the progressive wave, and hyperblic equation, which may consider even the reflected wave, were developed and applied to the area of the submerged circular shoal and then results obtained from both models were compared with experimental measurements and each other. The hyperbolic model was further applied to both the detaced breakwater and the breakwater with a gap. The numerical results were plotted and compated with the existing data. Numerical solutions were obtained with the finite difference method.

  • PDF

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.

Experimental Study on Wave Overtopping Rate of Wave Overtopping Control Structure for Wave Energy Conversion (파랑 에너지 변환을 위한 월파제어구조물의 월파량 산정 실험)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.8-15
    • /
    • 2005
  • Wave energy has been considered to be one of the most promising energy resources for the future, as it is pollution-free and an abundant natural resource. However, since it has drawbacks of non-stationary energy density, it is necessary to change the wave energy into a simple concentrated energy. Progressive waves in a coastal area can be amplified, swashed, and overtopped by a wave overtopping control structure. By conserving the quantity of overflow in a reservoir, the kinetic energy of the waves can be converted to the potential energy with a hydraulic head above the mean sea level. The potential energy in the form of a hydraulic head can be utilized to produce electric power, similar to hydro-electric power generation. This study aims to find the most optimal shape of wave overtopping structure for maximum overtopping volume of sea water; for this purpose, we carried out the wave overtopping experiment in a wave tank, under both regular and irregular wave conditions.

A Study on Object Transport System Using 2-Mode Ultrasonic Wave (2-Mode 초음파를 이용한 물체 이송에 관한 연구)

  • 정상화;김택현;신병수;차경래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1170-1173
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the common system is required. The common systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches, the optical lens. The ultrasonic wave driven system solve these problem. In this paper the object transport system using the excitation of ultrasonic wave is proposed. the experiments for finding the optimal excitation frequency, finding phase-difference between two ultrasonic wave generators are performed. The effect of transporting speed according to the change of amplification voltage is verified. In addition, the system performance for actual use is evaluated

  • PDF

Development of the Object Transport System using Ultrasonic Wave Excitation (초음파 여기를 이용한 물체 이송 시스템 개발에 관한 연구)

  • Jeong, Sang-Hwa;Shin, Byung-Su;Cha, Kyoung-Rae;Song, Suk;Lee, Kyung-Hyung
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.371-375
    • /
    • 2003
  • In recent years, as the semiconductor and the optical industry grows, the necessity of the transporting system for semiconductor and precision optical lens without damage increases. The transport system using ultrasonic wave is very suitable for this area. In this paper the object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal excitation frequency, finding phase-difference between two ultrasonic wave generators are performed. The effect of transporting speed according to the change of weight and amplification voltage are verified. In addition, the system performance for actual use is evaluated.

  • PDF

Nonlinear Wave Interaction of Three Stokes' Waves in Deep Water: Banach Fixed Point Method

  • Jang, Taek-S.;Kwon, S.H.;Kim, Beom-J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1950-1960
    • /
    • 2006
  • Based on Banach fixed point theorem, a method to calculate nonlinear superposition for three interacting Stokes' waves is proposed in this paper. A mathematical formulation for the nonlinear superposition in deep water and some numerical solutions were investigated. The authors carried out the numerical study with three progressive linear potentials of different wave numbers and succeeded in solving the nonlinear wave profiles of their three wave-interaction, that is, using only linear wave potentials, it was possible to realize the corresponding nonlinear interacting wave profiles through iteration of the method. The stability of the method for the three interacting Stokes' waves was analyzed. The calculation results, together with Fourier transform, revealed that the iteration made it possible to predict higher-order nonlinear frequencies for three Stokes' waves' interaction. The proposed method has a very fast convergence rate.

Development of the object transport system using 2-Mode ultrasonic wave excitation (2-Mode초음파 여기 물체 이송 시스템 개발에 관한 연구)

  • 정상화;신병수;차경래
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.956-959
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the common system is required. The common systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system solve these problem. In this paper the object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal excitation frequency, finding phase-difference between two ultrasonic wave get orators are performed. The effect of transporting speed according to the change of weight and amplification voltage are verified. In addition, the system performance for actual use is evaluated.

  • PDF

An Analytical Study on Generation of Pore-Water Pressures Induced by Flow and Waves in Seabed, and Resulting Liquefaction (흐름과 파에 의한 해저지반내 간극수압의 발생과 액상화에 관한 해석적인 연구)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Bae, Ki-Seong;Jeon, Jong-Hyeok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.324-338
    • /
    • 2015
  • Analytical solutions for interaction between seabed and waves such as progressive wave or partial standing wave with arbitrary reflection ratio or standing wave have been developed by many researchers including Lee et al.(2014; 2015a; 2015b; 2015c; 2015d) and Yamamoto et al.(1978). They handled the pore-water pressure as oscillating pore-water pressure and residual pore-water pressure separately and discussed the seabed response on each pore-water pressure. However, based on field observations and laboratory experiments, the oscillating and residual pore-water pressures in the seabed do occur not separately but together at the same time. Therefore, the pore-water pressure should be investigated from a total pore-water pressure point of view. Thus, in this paper, the wave-induced seabed response including liquefaction depth was discussed among oscillating, residual, and total pore-water pressures' point of view according to the variation of wave, seabed, and flow conditions. From the results, in the field of flow with the same direction of progressive wave, the following seabed response has been identified; with increase of flow velocity, the dimensionless oscillating pore-water pressure increases, but the dimensionless residual pore-water pressure decreases, and consequently the dimensionless total pore-water pressure and the dimensionless liquefaction depth decrease.

Numerical Simulation of Unsteady Inviscid Waves by Spectral Method

  • Lee, Jin-Ho;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.140-145
    • /
    • 2000
  • The spectral method which is composed of an eigenfunction expansion of free modes in the wave number domain is used to produce two dimensional unsteady inviscid wave simulation such as progressive waves in a numerical pneumatic wave tank. A spatial and time dependent free surface elevation and the potential are calculated by integrating ODE derived from fully nonlinear kinematic and dynamic free surface boundary condition at each time step. The nonlinear characteristics in the waves by this method were notable as increasing wave steepness. This method is very useful and powerful in terms of saving computational time caused by rapid convergence exponentially with increasing number of nodes, even preserving accurate numerical results. Moreover, it will given us many possibilities to apply to naval and ocean engineering fields.

  • PDF