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Numerical Models of Water Wave with Parabolic
and Hyperbolic Forms

Lee, Jong-Kyu® / Lee, Chang-Hae™’

ABSTRACT/The numerical models of the parabolic equation, applicable only to the
progressive wave, and hyperbolic equation, which may consider even the reflected wave,
were developed and applied to the area of the submerged circular shoal and then results
obtained from both models were compared with experimental measurements and each other.
The hyperbolic model was further applied to both the detached breakwater and the break-
water with a gap. The numerical results were plotted and compared with the existing data.

Numerical solutions were obtained with the finite difference method.
1. Introduction

Waves travelling in the sea do not experience the deformation of their characteristics
before the water depth becomes nearly half of the wave length. As these waves are
approaching toward nearshore, waves go through some changes of wave characteristics due
to shoaling, refraction, - diffraction and reflection, Previous investigations on wave
transformation are mostly based on the measurements in the field and physical modelling
which require a great deal of effort and time, With the advent of large memory and high
speed computers, it became popular to analyze the wave transformation numerically in eco-
nomic aspect,

Berkhoff (1972) first drived an elliptic type equation, which is called mild-slope equation
and well describes the characteristics of wave transformation influenced by shoaling,
refraction, diffraction and reflection, by integrating three dimensional velocity potential
equation over the depth and incorperating boundary conditions at free-surface and bottom
under the assumption that bottom slope is mild and terms higer than the second order can
be neglected, An elliptic equation takes the form of a boundary value problem and reqires
the solution of a large mumber of simultaneous equations, According to Booij(1981), the
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increased computation time and difficulty involved in the solution of an elliptic equation make
it much less useful than the solution of a hyperbolic or parabolic equation,

Substituting wave’s time-harmonic variable, the mild-slope equation can be represented in
term of wave amplitude, This parabolic approximation is done by Radder (1979), Kirby(1983),
Liu(1983), and Liu and Tsay(1984)., Lee and Lee(1990) applied the parabolic type equation
based on Liu and Tsay's mathematical model(1984) to the rigion where the circular shoal is
existing. The use of the parabolic model may be limited if wide-angled diffraction occurs,
because the energy transfer in one of the co-ordinates is ignored in the mathematical
formulation (Yoo et al. , 1988). Therefore the parabolic model is not capable of diffraction
analysis of the back side of breakwater, Moreover the parabolic approximation is not ade-
quate for the case of the wave field with a strongly reflecting structure,

Copeland (1985) has presented the mild-slope equation in the form of a pair of first-order
equations, which constitute a hyperbolic system, without the loss of the refleced wave, The
hyperbolic model can consider the effect of refraction, diffraction and reflection with accu-
racy of the mild-slope equation, and can also be formulated as an initial value problem,

The parabolic and the hyperbolic numerical models developed here were applied to the
calculation of wave height distribution in the region of the submerged circular shoal, Only
the hyperbolic model was applied to the wave field around the breakwater,

The first purpose of this study is to develope the numerical models of two types of
equations above mentioned and to compare the results obtained from the application of each
model to the circular shoal, The second one is on the applicability of the hyperbolic model

in the vicinity of breakwater with the various bottom slope, incident angle and reflectivity.
2. Governing Equation

The theory of the mild-slope equation is restricted to irrotational linear simple harmonic
waves, and loss of energy due to friction or breaking is not taken into account, The
two-dimensional mild-slope equation which is applicable to waves in the range from shallow
water to deep water has been derived by means of a small parameter development and an
integration over the water depth(Berkhoff, 1972):

Cs
C

V-(CCe74) + ? $=0 (1)

where ¢(x,y) is the velocity potential obtainted by factoring out the vertical component and
the harmonic time dependence

C is the phase velocity = /k

C, is the group velocity of the wave =d w/dk
w is the angular frequency (=kC)

k is the wave number (=2r/wave length), and
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X,y are the principal direction of wave propagation and the lateral direction,
respectively.

For the purpose of representing the mild-slope equation by the surface elevation 7, the
relation between 7 and ¢ is taken from the linearized dynamic free surface boundary con-
dition:

7(x,y.t) = (iw/g) 8(x,y) exp(-iwt) (2)

Substitution of Eq. (2) into Eq, (1) reduces to:

9.(0C, T7) + @i 7 = 0 (3)

In order to drive the parabolic equation, it was assumed that only the progressive waves
propagate on the slowly varying depth and the amplitude envelope varies more slowly in the
direction of wave propagation than in the lateral direction,

In addition, when we take the surface elevation 7 at t=0, 7 can also be expressed by:

7 (x.9) = Ale.yBoli[" k dx) (4)

where k, which is a function of x, is the wave numer of mean depth & which is averaged
with depth through the y direction,

From the substitution of Eq. (4) into Eq, (3), we can obtain the partial differential equation
in parabolic form as follows:

2A

2tk cc ay‘g +[ cc,

2R 4 kz—kz)]A -0 (5)

where Eq. (56) was derived with omitting the terms higher than the second order,

Next, differentiating Eq. (2) twice with respect to time, we get:

&

2
7
T (6)

Substitution of Eq. (6) into Eq, (3),

C, 37
V(CC, V) - o =0 (7)

Eq. (7) has hyperbolic form, This equation can be expressed as a pair of first-order

equations, according to Copeland(1985), which has the same form as those obtained by Ito
and Tanimoto (1972) :
C, a7

VQ+C—'£=0 (8)
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and

2Q -
25+ CCTT = 0 (9)

where Q is a vertically integrated function of particle velocity.
3. Numerical Models

3.1. Parabolic Model

Numerical solution of the parabolic equation is a initial value problem without the
downwave boundary condition, so a forward marching system may be used to solve three
diagonal matrix along the direction of wave propagation, The finite difference numerical
scheme is constructed by taking forward difference scheme as a time-like variable in the
x(wave propagation) direction and central difference scheme in the y direction, The
Crank-Nicholson implicit method is used for this scheme  Then the finite difference form

of Eq. (5) can be arranged as follows:

Cl'Aji-‘ll + CZ'A:” + Ca'Aisill = C,4 (10)
where,
C, =-B, +Bs . C. =B, - 2B, +Bs , Cs = B, + By

Ci = (B - Bs) Ai.y + (B, + 2B, - B,) A] - (B, - B3) AL,

i+l

B, = — (K'"'+ k')
Ax

/g

Fig.1. Configuration for experiment of 1 to and Tanimoto,
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As the boundary condition to have the solution of Eq. (10), the no-flux condition is used

along the y direction, thus:

Ay at y- + o (11)

oy
and the finite-difference form is:

Al =AY at y-t oo (12)
As the initial conditions, the experimental data of Ito and Tanimoto(1972) was taken and
the details are presented in Fig. 1:
hy = 0,15 m, h, = 0,05 m, Hy = 0.0064 m
T = 0.510812 sec, Lo = 0.4 m, Ax = 0,05 m, Ay = 0.05 m

where L, is the incident wave length,

3. 2. Hyperbolic model
The explicit finite differnce method is constructed, based on taking forward difference in

the x,y and t direction for Q and the ¢ direction for 7, and backward difference in the
x and y direction for 7 (Lee, 1990), The finite difference forms of Eq. (8) and Eq. (9) re-

duce to:
teat/2 ol _ C_ N _ . _At
700 =7, (C.)i',[an],j Qx: ., Ax
c . . At
-(C—]i,j[ann.s-Qyi.JTy (13)
4
ol t -+ A t
Qxi!. il =0Qx;,; - (ch)x.; [VAQ.A"W - 77:- lu.zi ) —i"x“ (14)
N R I v IR (15)

where the subscript { and ; indicate increments in the x and y direction, respectively.
Superscript t indicates evaluation at time ¢. The variables are located in the rectangular
grid shown in Fig, 2. Note that the locations of the integrated component velocities Qx

and Qu are offset from the locations of the surface elevation 7 by Ax/2 and ay/2,

respectively, It is apparent from the finite-difference equations that the values of Qx and
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Fig.2. The finite-difference mesh for hyperbolic model,

Qu are calculated at a time at/2 ahead of the corresponding values of 7,

In order to initiate a wave field in the model, the values of Qx and Qy(at time ¢ = 0)
and of 7(at time ¢ =-at/2) are chosen, in the examples given here, to represent sinusoidal
waves propagating over the whole model area, The waves are moving in a negative x
direction and have initial height 2A, ;, and wave directions 4, ; calculated from linear
wave theory for refraction and shoaling on a plane beach, All shadow zones, behind

breakwaters, etc., have the initial condition Qx® = Qy° = 7% = (.

Boundary values are required for the Qx and Qy, The upwave conditions form the driving
boundaries and so generate the wave field in the model during the integration period. The
downwave boundaries and internal boundaries (breakwater, etc.) are calculated in such a
way that any reflectivity from zero to unity can be specified (Tanimoto et al., 1975). The
driving boundaries require some refinement in order that reflected waves travelling back
towards the offshore boundary pass out the model and are not re-reflected, This has been
achieved by comparing the calculated values of Qx in the grid row adjacent to the driving
boundary with the required driving values, The downwave boundary values of Qx and Qy
are calculated from the histories of Qx and Qy on the adjacent upwave grid row, A
weighting factor AF and a time delay r are calculated for a given reflectivity r in such a

way that the boundary value may be expressed as:(Copeland, 1985)

Qus.i= AF Qul, (16)
where
AR = i o 7 cos? P2 (17)
C (1+r)? sin®(kax cos ) + (1-r)? cos?(kax cos 6) )
and

tan (kAxcos 8) (18)

tan (er) = I
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For a wave propagating in a discontinuous medium (e, g a finite-difference mesh)
the phase speed is changed from the expected C(=¢/k) to a value which satisfies the
finite—difference form of the wave equations, Note that the numerical stability requires
C.F.L. stability condition, Wave heights are calculated at the each grid location after each
wave period has elapsed from the root-mean-square value of 7, The value of wave angle
6, in the first instance, be obtained from Snell's Law., However, after one or more wave
periods of integration time have elapsed, values of § can be obtained using values of Qx
and Qy(Copeland, 1985).

4. Discussion

Fig. 3 shows that the numerical results of parbolic and hyperbolic models and
experimental results of lto and Tanimoto(1972) are indicated for the comparison, Since the
Neumann boundary condition is used in a case of the parabolic model, computations are
performed upto five times of wave length along the both sides of y direction from the
center., In the case of hyperbolic model which uses the arbitary reflectivity boundary con-
dition, computations are performed upto four times of wave length. Both numerical anal-
yses show satisfactory agreement with experimental results, In the view of the physical
meaning, the hyperbolic equation represents wave propagation phenomena more reasonably
than the parabolic equation, So it was confirmed that the experimental model also agree
better with the results of the hyperbolic model than those of the parabolic model as shown
in Fig, 3.

Fig. 4 shows the location of detached breakwater, breakwater with a gap, and profile
sections for analysis, Both results of this model using hyperbolic equation and Copeland’s
model on the detached breakwater - conditions are normal wave incidence and horizontal
bottom - are compared in Fig, 5, and it shows that agreement is good, As shown in Fig. 6,
standing waves appear in front of breakwater, and wave energy are propagating in the
direction of wave crest line, The differences of wave hight ratio in the case of bottom
slope = 0.02 are very small as shown in this figure, It means that the effect of shoaling
is smaller than diffraction, But the effect of reflection appears to be considerable in the
case of bottom slope = 0, 04.

Fig. 7 is the plotting results applied to the vicinity of breakwater with a gap of one
wave length and 60° of incident wave angle on the horizontal bottom, it shows a fair
agreement with the material of Shore Protection Manual(1984) which was calculated by
Johnson in 1952, He simplified the Penny and Price solution that water wave diffraction is
analogous to the diffraction of light, A validity of the hyperbolic model is proved by this
figure, Fig. 8 presents the results of numerical analysis which has conditions with incident
angle 30° and 60° in the range of bottom slope 0 and 0.02 , and shows the effects of
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Fig.9. Wave heights in each section for the breakwater with a gap: 60° of incident wave angle, horizontal bottom

and various reflectivity of breakwater,

diffraction and reflection well, The effect of bottom slope on the wave height ratio did not
appear significantly, it means that the effect of refraction is smaller than that of
diffraction, It is also shown that the patterns of the standing wave in front of the break-
water are formed differently with incident angle, The reason that wave hight distributions
of incident angle 60° are lower than of incident angle 30° is that the imaginary gap width
is reduced by enlarging the incident angle,

Fig. 9 shows the results of numerical analysis which has conditions with the various
reflectivity of 0 to 1.0, the incident angle 60° and the constant water depth, The variation
of wave amplitude in front of breakwater are large, depending on the reflectivity, But

effect of the reflecivity is very small at the backside of breakwater,
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5. Conclusion

The numerical models of parabolic equation and hyperbolic equations were developed,
and performed on the area of the submerged circular shoal, The results of the numerical
models were compared with the experimental results, Moreover, the hyperbolic model was
performed in the vicinity of breakwater where reflections are expected, and the results of
this model were compared with existing materials, In many cases where the bottom slope,
the incident angle and the reflectivity were different, the hyperbolic model was performed
to show the applicability on the property study of wave transformation, From the numerical
analysis, following conclusions are drawn:

1) Both results of the parabolic and the hyperbolic models, performed on the shoal,
agreed well with the experiment of Ilto and Tanimoto, and the hyperbolic model was
superior than the parabolic model on accuracy.

2) The results of the hyperbolic model, carried out in the vicinity of breakwater, accorded
well with the existing materials such as Copeland’ model(1985) and Shore Protection
Manual,

3) The effect of diffraction was stronger than that of refraction on the small bottom slope,
the patterns of the standing wave in front of the breakwater were varied with incident
angle, and the wave heights were enlarging in proportion to reflectivity at the front of
breakwater,
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