• Title/Summary/Keyword: Programs for the mathematically gifted elementary students

Search Result 18, Processing Time 0.025 seconds

An Analysis on the Mathematical Creativity and Computational Thinking of Elementary School Mathematical Gifted Students in the Convergence Class Programs (융합 수업 프로그램에서 나타나는 초등 수학 영재들의 수학적 창의성과 컴퓨팅 사고 분석)

  • Kang, Joo Young;Kim, Dong Hwa;Seo, Hae Ae
    • East Asian mathematical journal
    • /
    • v.38 no.4
    • /
    • pp.463-496
    • /
    • 2022
  • The purpose of this study is to analyze the mathematical creativity and computational thinking of mathematically gifted elementary students through a convergence class using programming and to identify what it means to provide the convergence class using Python for the mathematical creativity and computational thinking of mathematically gifted elementary students. To this end, the content of the nine sessions of the Python-applied convergence programs were developed, exploratory and heuristic case study was conducted to observe and analyze the mathematical creativity and computational thinking of mathematically gifted elementary students. The subject of this study was a single group of sixteen students from the mathematics and science gifted class, and the content of the nine sessions of the Python convergence class was recorded on their tablets. Additional data was collected through audio recording, observation. In fact, in order to solve a given problem creatively, students not only naturally organized and formalized existing mathematical concepts, mathematical symbols, and programming instructions, but also showed divergent thinking to solve problems flexibly from various perspectives. In addition, students experienced abstraction, iterative thinking, and critical thinking through activities to remove unnecessary elements, extract key elements, analyze mathematical concepts, and decompose problems into small components, and math gifted students showed a sense of achievement and challenge.

Development and Application of a Program Using Sphinx Puzzle for the Mathematically Gifted Elementary Students (초등수학영재를 위한 스핑크스 퍼즐 프로그램 개발과 적용사례)

  • Hwang, Ji Nam
    • Journal of Gifted/Talented Education
    • /
    • v.27 no.1
    • /
    • pp.37-57
    • /
    • 2017
  • In terms of making more various geometrical figures than existing Tangram, Sphinx Puzzle has been used as a material for the gifted education. The main research subject of this paper is to verify how many convex polygons can be made by all pieces of a Sphinx Puzzle. There are several previous researches which dealt with this research subject, but they did not account for the clear reasons on the elementary level. In this thesis, I suggest using unit area and minimum area which can be proved on the elementary levels to account for this research subject. Also, I composed the program for the mathematically gifted elementary students, regarding the subject. I figured out whether they can make the mathematical justifications. I applied this program for three 6th grade students who are in the gifted class of the G district office of education. As a consequence, I found that it is possible for some mathematically gifted elementary students to justify that the number of convex polygons that can be made by a Sphinx Puzzle is at best 27 on elementary level.

A Study on the Effective Use of Tangrams for the Mathematical Justification of the Gifted Elementary Students (초등수학영재의 수학적 정당화를 위한 칠교판 활용방안 연구)

  • Hwang, Jinam
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.589-608
    • /
    • 2015
  • The inquiry subject of this paper is the number of convex polygons one can form by attaching the seven pieces of a tangram. This was identified by two mathematical proofs. One is by using Pick's Theorem and the other is 和々草's method, but they are difficult for elementary students because they are part of the middle school curriculum. This paper suggests new methods, by using unit area and the minimum area which can be applied at the elementary level. Development of programs for the mathematically gifted elementary students can be composed of 4 class times to see if they can prove it by using new methods. Five mathematically gifted 5th grade students, who belonged to the gifted class in an elementary school participated in this program. The research results showed that the students can justify the number of convex polygons by attaching edgewise seven pieces of tangrams.

The Relationship between Mathematically Gifted Elementary Students' Math Creative Problem Solving Ability and Metacognition (초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계)

  • Shin, Seung Yoon;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.17 no.2
    • /
    • pp.95-111
    • /
    • 2014
  • The purpose of this study is to determine the relationship between metacognition and math creative problem solving ability. Specific research questions set up according to the purpose of this study are as follows. First, what relation does metacognition has with creative math problem-solving ability of mathematically gifted elementary students? Second, how does each component of metacognition (i.e. metacognitive knowledge, metacognitive regulation, metacognitive experiences) influences the math creative problem solving ability of mathematically gifted elementary students? The present study was conducted with a total of 80 fifth grade mathematically gifted elementary students. For assessment tools, the study used the Math Creative Problem Solving Ability Test and the Metacognition Test. Analyses of collected data involved descriptive statistics, computation of Pearson's product moment correlation coefficient, and multiple regression analysis by using the SPSS Statistics 20. The findings from the study were as follows. First, a great deal of variability between individuals was found in math creative problem solving ability and metacognition even within the group of mathematically gifted elementary students. Second, significant correlation was found between math creative problem solving ability and metacognition. Third, according to multiple regression analysis of math creative problem solving ability by component of metacognition, it was found that metacognitive knowledge is the metacognitive component that relatively has the greatest effect on overall math creative problem-solving ability. Fourth, results indicated that metacognitive knowledge has the greatest effect on fluency and originality among subelements of math creative problem solving ability, while metacognitive regulation has the greatest effect on flexibility. It was found that metacognitive experiences relatively has little effect on math creative problem solving ability. This findings suggests the possibility of metacognitive approach in math gifted curricula and programs for cultivating mathematically gifted students' math creative problem-solving ability.

A Comparative Study on Curricula for the Mathematically Gifted in Gifted Education Institutes attached Metropolitan Office of Education (초등수학분야 영재교육원의 교육내용 사례 비교 연구)

  • Kim, Sang Mee
    • School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.429-442
    • /
    • 2013
  • The purpose of this study was to examine the curricula for mathematically gifted focused on contents and graded sequences of those. Three cases of the curricula for the mathematically gifted including teachers' lesson plans and activity sheets for students were collected from gifted education institutes attached the Metropolitan Office of Education. By qualitative analysis, three cases are compared. The first, in a view of educational contents on mathematics, characteristics of the educational programs were investigated. The second, how these contents were arranged according to grades was inquired. On the basis of the results, further studies can be proposed as follows. First, there is a need to study the criteria for setting the educational contents and the sequences of education for the mathematically gifted connecting elementary mathematics education curricula. Second, it is necessary to form the networks in which can allow communication among teachers and researchers for the mathematically gifted.

  • PDF

Comparative Study between Mathematically Gifted Elementary Students and Common Students in Self-Efficacy and Career Attitude Maturity (초등수학영재와 일반학생의 자기효능감과 진로태도성숙과의 관계 비교)

  • Lee, Jung Hwa;Ryu, Sung Rim
    • Communications of Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.63-80
    • /
    • 2013
  • Reflecting the recent trends and needs of gifted education, this study set out to compare and analyze mathematically gifted elementary students and common students in self-efficacy and career attitude maturity, understand the characteristics of the former, and provide assistance for career education for both the groups. The subjects include 237 mathematically gifted elementary students and 221 common students in D Metropolitan City. The research findings were as follows: First, mathematically gifted elementary students turned out to have higher self-efficacy than common students at the significance level of .01 in the three self-efficacy subfactors, namely confidence, self-regulated efficacy, and task difficulty preference. The findings indicate that mathematically gifted elementary students have much confidence in themselves and strong faith in themselves, thus forming a habit of preferring a relatively high-level task by taking self-management and task difficulty into proper consideration. Second, mathematically gifted elementary students showed higher overall career attitude maturity than common students. There was significant difference at the significance level of .01 in decisiveness and preparedness between the two groups and significant difference at the significance level of .05 in assertiveness. However, there was no statistically significant difference in purposefulness and independence between the two groups. Finally, there were positive correlations at the significance level of .01 between all the subfactors of self-efficacy and those of career attitude maturity in all the subjects except for self-regulated efficacy and purposefulness, between which there were positive correlations at the significance level of .05. The mathematically gifted elementary students showed positive correlations between more subfactors of self-efficacy and career attitude maturity than common students. Given those findings, it is necessary to take differences in self-efficacy and career attitude maturity between mathematically gifted elementary students and common students into account when organizing and running a curriculum. The findings confirm the importance of providing students with various experiences fit for them and point to a need for helping mathematically gifted elementary students maintain a high level of self-efficacy and guiding them through career education with more appropriate career attitude maturity improvement programs.

An Analysis on the Math Camp Programs for Elementary Gifted Students -In Case of the Education Centers for the Gifted in Seoul Metropolitan Office of Education- (초등 영재교육원 수학 영재캠프 프로그램 분석 -서울특별시교육청 산하 영재교육원 사례를 중심으로-)

  • Lim, Kyeong-Jin;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.1
    • /
    • pp.81-102
    • /
    • 2010
  • The purpose of this study was to analyze the content and design of the seven math camp programs for students of the education centers for the elementary gifted students. The analysis focused on the goals, content, and evaluations utilized in the math camp programs. The results of the study were as follows. First, there was no big difference between the goals set for each camp, and they mainly focused on the goals in affective domain. Second, the content of math camp programs was focused on enrichment rather than acceleration. Most of the programs were focused on geometry, whereas fewer programs were focused on measurement, probability and statistics. Based on the Analysis, we found that only nine out of 27 programs applied level-wised or individual exercise programs. Third, all centers for the mathematically gifted carried out evaluations of their math camp programs. However, a specific evaluation plan was not established for the math camp program plans. We suggested the direction of math camp programs as follows. First, the goals should reflect on the intended outcomes of the math camp programs. Also, the goals of math camp programs need to be distinctive from general education goals. Second, the programs should contain harmonious contents with enrichment and acceleration and must include various reactions and task commitment. The math camp programs need to include references and an appropriate information for the gifted students to encourage self-directed learning. Third, a more specific evaluation plan for math camp programs needs to be developed for effective education for the gifted students.

  • PDF

The Effects of 4D-Frame Teaching upon Mathematically Gifted Elementary Students' Mathematical Creativity and Spatial Sense (4D 프레임 활용 학습이 초등 수학영재학생의 공간감각 및 수학적 창의성에 미치는 영향)

  • Lee, Ju Yong;Choi, Jae Ho
    • Education of Primary School Mathematics
    • /
    • v.16 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • The aim of this study was to develop a gifted educational program in math-gifted class in elementary school using recently developed 4D-frame. This study identified how this program impacted on spatial sense and mathematical creativity for mathematically gifted students. The investigation attempted to contribute to the developments for the gifted educational program. To achieve the aim, the study analysed the 5 and 6th graders' figure learning contents from a revised version of the 2007 national curriculum. According to this analysis, twelve learning sections were developed on the basis of 4D-frame in the math-gifted educational program. The results of the study is as follows. First, a learning program using 4D-frame for spatial sense from mathematically gifted elementary school students was statistically significant. A sub-factor of spatial visualization called mental rotation and sub-factors of spatial orientations such as sense of distance and sense of spatial perception were statistically significant. Second, the learning program that uses 4D-frame for mathematical creativity was statistically significant. The sub-factors of mathematical creativity such as fluency, flexibility and originality were all statistically significant. Third, the manipulation properties of 4D-frame helped to understand the characteristics of various solid figures. Through the math discussions in the class, participants' error correction was promoted. The advantage of 4D-frame including easier manipulation helped participants' originality for their own sculpture. In summary, this found that the learning program using 4D-frame attributed to improve the spatial sense and mathematical creativity for mathematically gifted students in elementary school. These results indicated that the writers' learning program will help to develop the programs for the gifted education program in the future.

An Analysis on the Programs for the Mathematically Gifted Children in the Elementary Schools (초등 수학 영재 교수-학습 프로그램 분석)

  • Hong, Eun Ja;Bae, Jong Soo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2005
  • The purpose of this study was to analyze the contents and designs of the developed 22 teaching and programs for the gifted students in elementary mathematics. The focus of the analysis were the participants and the characteristics of the contents, and were to reflect them on the areas of the 7th elementary mathematics curriculum and Renzulli's Enrichment Triad Model. The results of the study as follows: First, the programs for the low grade gifted students are very few compared to those of the high grade students. For earlier development of the young gifted students, we need to develop more programs for the young gifted students. Second, there are many programs in the area of geometry, whereas few programs are developed in the area of measurement. We need to develop programs in the various areas such as measurement, probability and statistics, and patterns and representations. Third, most programs do not follow the steps of the Renzulli's Enrichment Triad Model, and the frequency of appearance of the steps are the 1st, 2nd, and 3rd enrichments, sequentially. We need to develop hierarchical programs in which the sequency and relations are well orchestrated. Fourth, the frequency of appearance is as follows as sequentially: types of exploration of topics, creative problem solving, using materials, project types, and types of games and puzzles. In the development of structure of the program, the following factors should be considered: name of the chapter, overview of the chapter, objectives, contents by steps, evaluation, reading materials, and extra materials.

  • PDF

A study on teaching methods for the mathematically gifted in elementary school (초등학교 수학 영재 지도 방안에 관한 고찰)

  • Nam Seung-In
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.2 no.1
    • /
    • pp.41-59
    • /
    • 1998
  • Today's gifted students will be tomorrow's leaders in goverment, economies, technology, sciences, and all other areas of human endeavor. these students have a right to partcipate in school programs that will help them reach their special potentions. The school have on obligation to provide flexible and effective programs for gifted. In this study is to know in broad generalities for identifying methods mathematics gifted, the instructional environment, teaching methods in the regular classroom, enrichment program contents, evaluating student and program contents.

  • PDF