• Title/Summary/Keyword: Profiling analysis

Search Result 744, Processing Time 0.034 seconds

Novel target genes of hepatocellular carcinoma identified by chip-based functional genomic approaches

  • Kim Dong-Min;Min Sang-Hyun;Lee Dong-Chul;Park Mee-Hee;Lim Soo-Jin;Kim Mi-Na;Han Sang-Mi;Jang Ye-Jin;Yang Suk-Jin;Jung Hai-Yong;Byun Sang-Soon;Lee Jeong-Ju;Oh Jung-Hwa
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.83-89
    • /
    • 2006
  • Cellular functions are carried out by a concerted action of biochemical pathways whose components have genetic interactions. Abnormalities in the activity of the genes that constitute or modulate these pathways frequently have oncogenic implications. Therefore, identifying the upstream regulatory genes for major biochemical pathways and defining their roles in carcinogenesis can have important consequences in establishing an effective target-oriented antitumor strategy We have analyzed the gene expression profiles of human liver cancer samples using cDNA microarray chips enriched in liver and/or stomach-expressed cDNA elements, and identified groups of genes that can tell tumors from non-tumors or normal liver, or classify tumors according to clinical parameters such as tumor grade, age, and inflammation grade. We also set up a high-throughput cell-based assay system (cell chip) that can monitor the activity of major biochemical pathways through a reporter assay. Then, we applied the cell chip platform for the analysis of the HCC-associated genes discovered from transcriptome profiling, and found a number of cancer marker genes having a potential of modulating the activity of cancer-related biochemical pathways such as E2F, TCF, p53, Stat, Smad, AP-1, c-Myc, HIF and NF-kB. Some of these marker genes were previously blown to modulate these pathways, while most of the others not. Upon a fast-track phenotype analysis, a subset of the genes showed increased colony forming abilities in soft agar and altered cell morphology or adherence characteristics in the presence of purified matrix proteins. We are currently analyzing these selected marker genes in more detail for their effects on various biological Processes and for Possible clinical roles in liver cancer development.

  • PDF

Comparison of Expression Profiling of Gastric Cancer by O1igonucleotide and cDNA Microarrays (O1igonucleotide Microarray와 cDNA Microarray를 이용한 위암조직의 대단위 유전자 발현 비교)

  • Jung, Kwang-Hwa;Kim, Jung-Kyu;Noh, Ji-Heon;Eun, Jung-Woo;Bae, Hyun-Jin;Lee, Sug-Hyung;Park, Won-Sang;Yoo, Nam-Jin;Lee, Jung-Young;Nam, Suk-Woo
    • YAKHAK HOEJI
    • /
    • v.51 no.3
    • /
    • pp.179-185
    • /
    • 2007
  • Gastric cancer is one of the most common malignancies in Korea, but the predominant molecular event underlying gastric carcinogenesis remain unknown. Recently, DNA microarray technology has enabled the comprehensive analysis of gene expression level, and as such has yielded great insight into the molecular nature of cancer, However, despite the powerful approach of this techniques, the technical artifacts and/or bias in applied array platform limited the liability of resultant tens of thousand data points from microarray experiments. Therefore, we applied two different any platforms, such as olignucleotide microarray and cDNA microarray, to identify gastric cancer related large-scale molecular signature of the same human specimens. When thirty sets of matched human gastric cancer and normal tissues subjected to oligonucleotide microarray, total 623 genes were resulted as differently expressed genes in gastric cancer compared to normal tissues, and 252 genes for cDNA microarray analysis. In addition, forty three outlier genes which reflect the characteristic expression signature of gastric cancer beyond array platform and analytical protocol was recapitulated from two different expression profile. In conclusion, we were able to identify robust large-scale molecular changes in gastric cancer by applying two different platform of DNA microarray, this may facilitate to understand molecular carcinogenesis of gastric cancer.

Method Development for the Profiling Analysis of Urine Globotriaosylceramide (Gb3) for the Screening of Fabry Disease by Tandem Mass Spectrometry (ESI-MS/MS를 이용한 소변 중 Globotriaosylceramide(Gb3)의 정량 및 임상 응용; 패브리병(Fabry) 진단)

  • Yoon, Hye-Ran;Cho, Kyung-Hee;Kang, Seung-Woo;Kwon, Young-Joo;Jeong, Choon-Sik;Lee, Yong-Soo
    • YAKHAK HOEJI
    • /
    • v.51 no.2
    • /
    • pp.96-102
    • /
    • 2007
  • Measurement of globotriaosylceramide (Gb3, ceramide trihexoside) in urine has clinical importance for monitoring after enzyme replacement therapy in Fabry disease patients. The disease is an X-linked lipid storage disorder that results from a deficiency of the enzyme ${\alpha}$-galactosidase A (${\alpha}$-Gal A). The lack of ${\alpha}$-Gal A causes an intracellular accumulation of glycosphingolipids, mainly Gb3. A simple, rapid, and highly sensitive analytical method for Gb3 in urine was developed without labor-extensive pre-treatment by electrospray ionization MS/MS (ESI-MS/MS). Only simple 5-fold dilution of urine is necessary for the extraction and isolation of Gb3 in urine. Gb3 in diluted urine was dissolved in dioxane containing C17:0 Gb3 as an internal standard. After centrifugation it was directly injected and analyzed through guard column by in combination with multiple reaction monitoring mode of ESI-MS/MS. Eight isoforms of Gb3 were completely resolved from urine matrix. C24:0 Gb3 occupied 50% of total Gb3 as a major component in urine. Linear relationship for Gb3 isoforms was found in the range of 0.005${\sim}$5.0 ${\mu}$g/ml. The limit of detection (S/N=5) was 0.005 ${\mu}$g/ml and limit of quantification was 0.05 ${\mu}$g/ml for C24:0 Gb3 with acceptable precision and accuracy. Correlation coefficient of calibration curves for 8 Gb3 isoforms ranged from 0.9598 to 0.9975. This method could be useful for rapid and sensitive 1st line Fabry disease screening, monitoring and/or diagnostic tool for Fabry disease.

Development of a SCAR Marker Linked to Male Fertility Traits in 'Jinkyool' (Citrus sunki) ('진귤' (Citrus sunki) 의 웅성가임 연관 SCAR 마커 개발)

  • Chae, Chi-Won;Dutt, Manjul;Yun, Su-Hyun;Park, Jae-Ho;Lee, Dong-Hoon
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1659-1665
    • /
    • 2011
  • In Citrus, an $F_1$ segregation population of 150 plants was constructed from a cross between 'Kiyomi' (C. unshiu ${\times}$ C. sinensis) carrying the male sterility trait and 'Jinkyool' (C. sunki). Sequence-related amplification polymorphism (SRAP) combined with bulked segregant analysis was used to develop markers linked to male fertility. In the $F_1$ population, 66 out of 150 seedlings had aborted anthers and the ratio of male sterile plants to fertile plants in the progenies matched the expected Mendelian segregation ratio of 1:1 ($x^2$ =2.16 at p=0.05). From the profiling of the 197 SRAP primer sets, three SRAP primer sets (F4/R27, F39/R60, and F15/R37) that were closely linked to the target trait were identified and successfully converted into a sequence characterized amplified region (SCAR) marker for selection of male fertility in citrus. The SCAR marker, using the pMS 33U/pMS 1462L primer set specifically, produced a single 1.4-Kb fragment that was linked to male fertility. Our results suggested that this SCAR marker can be useful for marker-assisted selection of male sterile individuals in breeding $F_1$ progenies in Citrus.

Gene Expression Profiling by Ginsenoside Rb1 in Keratinocyte HaCaT Cells (피부각질세포 HaCaT에서 진세노사이드 Rb1에 의한 유전자 발현 양상)

  • Lee, Dong Woo;Kim, Jung Min;Bang, In Seok
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.514-523
    • /
    • 2019
  • We investigated the gene expression patterns and the mechanisms of action of the apoptotic response by microarray analysis of human keratinocyte HaCaT cells treated with ginsenoside Rb1, a saponin of Panax ginseng C. A. Meyer. Genes related to apoptosis, the G2/M transition of the mitotic cell cycle, cell division, mitotic nuclear division, and intracellular protein transport were 2-fold up-regulated in HaCaT cells treated with the ginsenoside Rb1, whereas genes related to DNA repair, regeneration fission, and extracellular matrix organization were 2-fold down-regulated. Apoptosis signaling may be mediated by FAS and PLA2G4A, and pathway analysis indicated that STAT3 might be an upstream regulator of these genes. The activity of FAS and PLA2G4A was verified by qPCR, which showed that FAS was increased about 2-fold in HaCaT cells treated with $10{\mu}g/ml$ of ginsenoside Rb1 for 24 hr, PLA2G4A was increased about twice after 6 hours, and gene expression was increased more than 2-fold after 24 hr. Knockdown of STAT3 with siRNA decreased FAS expression and increased PLA2G4A expression but only FAS was passed from the upstream regulator STAT3. These results indicate that STAT3, which is an upstream regulator, induces apoptosis via FAS during treatment with ginsenoside Rb1.

Effects of acute heat stress on salivary metabolites in growing pigs: an analysis using nuclear magnetic resonance-based metabolomics profiling

  • Kim, Byeonghyeon;Kim, Hye Ran;Kim, Ki Hyun;Ji, Sang Yun;Kim, Minji;Lee, Yookyung;Lee, Sung Dae;Jeong, Jin Young
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.319-331
    • /
    • 2021
  • Heat stress (HS) causes adverse impacts on pig production and health. A potential biomarker of HS is required to predict its occurrence and thereby better manage pigs under HS. Information about the saliva metabolome in heat-stressed pigs is limited. Therefore, this study was aimed to investigate the effects of acute HS on the saliva metabolome and identify metabolites that could be used as potential biomarkers. Growing pigs (n = 6, 3 boars, and 3 gilts) were raised in a thermal neutral (TN; 25℃) environment for a 5-d adaptation period (CON). After adaptation, the pigs were first exposed to HS (30℃; HS30) and then exposed to higher HS (33℃; HS33) for 24 h. Saliva was collected after adaptation, first HS, and second HS, respectively, for metabolomic analysis using 1H-nuclear magnetic resonance spectroscopy. Four metabolites had significantly variable importance in the projection (VIP > 1; p < 0.05) different levels in TN compared to HS groups from all genders (boars and gilts). However, sex-specific characteristics affected metabolites (glutamate and leucine) by showing the opposite results, indicating that HS was less severe in females than in males. A decrease in creatine levels in males and an increase in creatine phosphate levels in females would have contributed to a protective effect from protein degradation by muscle damage. The results showed that HS led to an alteration in metabolites related to energy and protein. Protection from muscle damage may be attributed to the alteration in protein-related metabolites. However, energy-related metabolites showed opposing results according to sex-specific characteristics, such as sex hormone levels and subcutaneous fat layer. This study had shown that saliva samples could be used as a noninvasive method to evaluate heat-stressed pigs. And the results in this study could be contributed to the development of a diagnostic tool as a noninvasive biomarker for managing heat-stressed pigs.

Sensory characteristics and preferences of rice-based distilled soju aged in different types of containers using Check-All-That-Apply (CATA) (숙성 기간과 저장용기를 달리한 쌀 증류식 소주의 Check-All-That-Apply (CATA)를 활용한 감각특성 및 기호도 분석)

  • Kim, Wan-Keun;Lee, Seung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.362-368
    • /
    • 2022
  • The sensory characteristics of nine rice-based distilled soju were determined using check-all-that-apply (CATA) profiling. A total of 53 consumers evaluated the soju for two appearance attributes, nine aroma attributes, nine flavor/taste attributes, four mouth-feel related sensory attributes, and overall desirability. The total sum of CATA terms indicated that 14 characteristics showed frequency differences of over 10 and that there were significant differences among nine samples for eleven sensory attributes as determined using Cochran's q test (p<0.05). Based on correspondence analysis of CATA data, the samples were primarily separated by the first dimension, which accounted for 89% of the total variance among samples. The "brown color," "fruit taste," and "grain aroma" characteristics had higher frequencies than those for the "white color," "acetone aroma," and 'alcohol taste" characteristics. Overall, there was a higher preference for oak-aged samples than for samples aged in other containers. "sweet aroma', 'fruit aroma," and "sweet taste" seemed to positively affect consumer preferences, while "bitter taste," "alcohol taste," and "acetone aroma" appeared to negatively affect consumer preferences as determined by principal coordinate analysis.

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

Comparative transcriptome and metabolome analyses of four Panax species explore the dynamics of metabolite biosynthesis

  • Hyunjin, Koo;Yun Sun, Lee;Van Binh, Nguyen;Vo Ngoc Linh, Giang;Hyun Jo, Koo;Hyun-Seung, Park;Padmanaban, Mohanan;Young Hun, Song;Byeol, Ryu;Kyo Bin, Kang;Sang Hyun, Sung;Tae-Jin, Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

Diversity and Succession of the Bacterial Community during the Initial Fermentation Period in Modernized Soy Sauce (Ganjang) (개량식 간장의 발효 초기 단계에서의 미생물 다양성 및 천이에 관한 연구)

  • Ho Jin Jeong;Gwangsu Ha;Jungmi Lee;Yeji Song;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.481-489
    • /
    • 2023
  • The taste and quality of soy sauce, a fermented liquid condiment, is greatly influenced by microbial metabolism during fermentation. To investigate the microbiological characteristics of ganjang during the initial fermentation process, we prepared meju (fermented soybean) blocks fermented with starter cultures and solar salts and analyzed the microbial community quantitively using 16S rRNA gene profiling from ganjang that had been fermented over a five-week period. The ganjang samples were collected and analyzed after soaking for week one (1W), three (3W), and five (5W) weeks. We found that Halomonadaceae was significantly higher in the 1W group (89.83%) than the 3W and 5W groups (14.46%, and 13.78%, respectively). At a species level, Chromohalobacter beijerinckii and Chromohalobacter canadensis were the dominant species in the 1W group but several taxa such as Bacillus subtilis, Pediococcus acidilactici, and Enterococcus faecalis were more abundant in the 3W and 5W groups. Pearson correlation analysis of the relative abundance of the bacteria showed a negative correlation between Chromohalobacter and two bacterial genera Bacillus and Enterococcus. Beta-diversity showed a statistical distinction between the 1W and the 3W and 5W groups, while no significance was evident between the 3W and 5W groups. Linear discriminant effect size analysis was used to identify biomarkers and significant differences in the relative abundance of several halophilic bacteria, Bacillus sp. and lactic acid bacteria at 1W, 3W, and 5W, recpectively, which indicates the important role of the bacterial community at these time points.