Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.
본 연구에서는 한국노동패널 23차 부가조사 자료를 이용하여 유연근무제와 근로자의 일·생활균형의 관계에 대해 코로나 19 이후 재택근로 확산의 영향을 중심으로 분석하였다. 분석 결과, 재택근무제는 근로자의 행복도 및 가족관계 만족도에 긍정적인 영향을 미치는 것으로 나타났으며, 여성의 경우 직무만족도와 조직몰입도, 일자리 안정성과 관련한 직무 만족도에도 긍정적인 영향을 미치는 것으로 확인되었다. 또한, 재택근무자와 비재택근무자의 코로나19를 전후로 한 시간활용 변화를 수면시간, 자기계발시간, 자녀돌봄, 가사노동, 운동, 친교모임 등 다양한 측면에서 살펴보았는데, 가장 큰 특징은 재택근무자가 비재택근무자에 비해 코로나19 이후 가사노동 시간과 자녀돌봄 시간이 더욱 크게 증가하였다는 점이며 이러한 경향은 여성에게서 더욱 크게 나타났다. 본 연구의 분석 결과는 재택근무제의 효과가 자녀돌봄과 일을 병행해야 하는 근로자들에게는 그 효과가 반감될 수 있으며, 그 영향은 여성에게 더 클 수 있음을 시사한다. 따라서 자녀돌봄 등으로 인해 일·생활갈등 상황에 놓인 재택근로자들이 업무생산성을 유지하고 일·생활균형을 실현할 수 있도록 사회적 지원을 강화할 필요가 있으며, 유연근무제도가 전통적 성역할을 강화하는 매개체가 되지 않도록 적극적인 정책적 노력이 필요할 것이다.
Unmanned aerial vehicle (UAV) and sensor technologies are rapidly developing and being usefully utilized for spatial information-based agricultural management and smart agriculture. Until now, there have been many difficulties in obtaining production information in a timely manner for large-scale agriculture on reclaimed land. However, smart agriculture that utilizes sensors, information technology, and UAV technology and can efficiently manage a large amount of farmland with a small number of people is expected to become more common in the near future. In this study, we evaluated the productivity of forage maize grown on reclaimed land using UAV and sensor-based technologies. This study compared the plant height, vegetation cover ratio, fresh biomass, and dry biomass of maize grown on general farmland and reclaimed land in South Korea. A biomass model was constructed based on plant height, cover ratio, and volume-based biomass using UAV-based images and Farm-Map, and related estimates were obtained. The fresh biomass was estimated with a very precise model (R2 =0.97, root mean square error [RMSE]=3.18 t/ha, normalized RMSE [nRMSE]=8.08%). The estimated dry biomass had a coefficient of determination of 0.86, an RMSE of 1.51 t/ha, and an nRMSE of 12.61%. The average plant height distribution for each field lot was about 0.91 m for reclaimed land and about 1.89 m for general farmland, which was analyzed to be a difference of about 48%. The average proportion of the maize fraction in each field lot was approximately 65% in reclaimed land and 94% in general farmland, showing a difference of about 29%. The average fresh biomass of each reclaimed land field lot was 10 t/ha, which was about 36% lower than that of general farmland (28.1 t/ha). The average dry biomass in each field lot was about 4.22 t/ha in reclaimed land and about 8 t/ha in general farmland, with the reclaimed land having approximately 53% of the dry biomass of the general farmland. Based on these results, UAV and sensor-based images confirmed that it is possible to accurately analyze agricultural information and crop growth conditions in a large area. It is expected that the technology and methods used in this study will be useful for implementing field-smart agriculture in large reclaimed areas.
The meat consumption per person has continuously increased in recent years. However, the labor force in the domestic livestock industry has decreased due to the declining and ageing population. In order to increase productivity, the government have developed and distributed design standard of livestock houses. Presently, report showed that the adaptation rate of the developed livestock house design standard on the real farm was still low. Thus, this paper aimed to find ways to improve the utilization of the design standard through surveys. The survey was conducted on 650 farms across the country. Analysis of the result showed that in the poultry house, the unawareness of farmers to the design standard was found to be the biggest reason for not using the design standards. On the other hand, in the swine house, the previously built swine houses do not fit with the design standard. From these result, the following recommendations were suggested: 1) promotion and education are needed to enhance usage of design standard; 2) since it is impossible to make a design standard considering all the farm sites, it is important to consider the conditions of various farm site prior to enhancement of the design standard; 3) improvement factors such as reinforcing the ventilation design, reflecting animal welfare, preventing livestock diseases, and enhancing ICT devices can also be promoted.
Purpose: The purpose of this study is to derive major policies that domestic small and medium-sized manufacturing companies should consider to maximize productivity and quality improvement by utilizing manufacturing data and AI, and to find priorities and implications. Methods: In this study, domestic and international issues and literature review by country were conducted to derive major considerations such as manufacturing AI technology, manufacturing AI talent, manufacturing AI data and manufacturing AI ecosystem. Additionally, the questionnaire survey targeting 46 experts of manufacturing data and AI industry were conducted. Finally, the major considerations and detailed factors importance were derived by applying the Analytic Hierarchy Process (AHP). Results: As a result of the study, it was found that 'manufacturing AI technology', 'manufacturing AI talent', 'manufacturing AI data', and 'manufacturing AI ecosystem' exist as key considerations for domestic manufacturing AI. After empirical analysis, the importance of the four key considerations was found to be 'manufacturing AI ecosystem (0.272)', 'manufacturing AI data (0.265)', 'manufacturing AI technology (0.233)', and 'manufacturing AI talent (0.230)'. The importance of the derived four viewpoints is maintained at a similar level. In addition, looking at the detailed variables with the highest importance for each of the four perspectives, 'Best Practice', 'manufacturing data quality management regime, 'manufacturing data collection infrastructure', and 'manufacturing AI manpower level of solution providers' were found. Conclusion: For the sustainable growth of the domestic manufacturing AI ecosystem, it should be possible to develop and promote manufacturing AI policies in a balanced way by considering all four derived viewpoints. This paper is expected to be used as an effective guideline when developing policies for upgrading manufacturing through domestic manufacturing data and AI in the future.
본 연구에서는 주요 산림 선진국인 오스트리아, 일본, 뉴질랜드, 인도네시아의 산림 정책 및 레이저 스캐닝 기술을 활용한 산림자원조사 사례를 조사하고, 레이저 스캐닝을 통해 취득되는 포인트클라우드 데이터의 산림자원조사 적용 가능성을 파악하였다. 연구를 통해 선진국의 산림정책은 지속 가능한 산림의 보전 및 관리와 일자리 창출, 목재 생산성 향상을 목적으로 추진되고 있으며, 새로운 기술 연구 및 실제 사업에서의 적용이 이루어지고 있음을 알 수 있었다. 우리나라는 주요 산림 선진국과 비교했을 때 국토면적에 비해 높은 산림 비율을 가지고 있지만 임목축적은 상대적으로 낮게 나타나 임목축적의 향상을 위한 과학적인 산림관리가 필요한 시점이라 할 수 있다. 레이저 스캐닝 기술의 적용 가능성 파악을 위해 포인트클라우드 데이터를 이용한 산림자원조사 실험을 수행하였으며, 흉고직경, 수고, 단위면적당 본수를 산출하고, 수관의 형태를 파악하였다. 향후 다양한 레이저 스캐닝 기술을 적용한 현장 실험과 정확도 평가가 이루어진다면 포일트클라우드를 이용한 산림자원조사의 정량적인 업무 개선정도를 제시할 수 있을 것이다.
본 연구에서는 식물의 영양분 흡수에 따른 식물 성장뿐만 아니라 기공 기능 및 광합성에도 영향을 끼치는 온실의 수증기압차(VPD, Vapor Pressure Deficit)예측을 위한 머신러닝 모델들의 성능을 비교해보았다. VPD 예측을 위해 온실 내·외부 환경요소 및 시계열 데이터의 시간적 요소들과의 상관관계를 확인하고 상관관계가 높은 요소들이 VPD에 어떤 영향을 미치는지 확인하였다. 예측 모델의 성능을 분석하기 전 분석 시계열 데이터의 양(1일, 3일, 7일), 간격(20분, 1시간)이 예측 성능에 미치는 영향을 확인하여 데이터의 양과 간격을 조절하였다. 마지막으로 4개의 머신러닝 예측 모델(XGB Regressor, LGBM Regressor, Random Forest Regressor 등)을 적용하여 모델별 예측 성능을 비교했다. 모델의 예측 결과로 20분 간격의 1일의 데이터를 사용했을 때 LGBM에서 MAE는 0.008, RMSE는 0.011의 가장 높은 예측 성능을 보였다. 또한 20분 후 VPD 예측에 가장 큰 영향을 미치는 요소는 환경적 요인보다는 과거 20분 전의 VPD(VPD_y__71)임을 확인하였다. 본 연구의 결과를 활용하여 VPD 예측을 통해 작물의 생산성을 높이고, 온실의 결로, 병 발생 예방 등이 가능하다. 향후 온실의 환경 데이터 예측뿐만 아니라 더 나아가 생산량 예측, 스마트팜 제어 모델 등 다양한 분야에 활용할 수 있을 것이다.
최근 수산 자원의 고갈에 따른 육상 양식장에서의 '기르는 어업'에 의한 생산성 향상에 대한 기대가 크게 고조되고 있다. 육상 양식장의 경우, 해상 환경과 달리 환경 및 양성 요소에 대한 제어와 관리가 용이하며, 출하 계획에 따른 생산량 조정이 가능한 이점이 있다. 반면, 자연 환경에서와 달리 어류 성장을 위한 인위적인 관리가 필요하기 때문에 운영에 따른 비용이 크게 증가할 수 있는 단점이 있다. 따라서, 계획된 목표 출하량에 맞추어 효율적으로 양식장을 운영함으로써 이윤 극대화를 추구할 수 있다. 이러한 효율적인 양식장 운영 및 어류 양성을 위해서는 대상 어종에 따른 정확한 성장 예측 모델이 반드시 요구된다. 현재까지 대부분의 성장 예측 모델은 양식장 수집 데이터를 활용하여 통계적 분석 기반의 수치 해석적인 결과들이 주를 이룬다. 본 논문에서는 기존의 통계적 관점에 의한 성장 예측 모델이 가질 수 있는 데이터 확보의 어려움 및 낮은 정확도에 대한 정량적 수치를 제공하기 어려운 단점을 극복하기 위해 확률적 관점에서의 성장 예측 모델을 제시한다. 확률적 접근을 위하여 양성에 가장 중요한 요소인 수온을 기반으로 한 가우시안 프로세스 회귀 방식을 도입하여 모델링을 수행한다. 이를 통해, 특정 시점에서의 성장 예측값에 대한 평균치와 해당 값에 대한 신뢰구간을 동시에 제공함으로써 보다 효율적인 양식장 운영을 위한 참고 수치를 제공할 수 있을 것으로 기대한다.
전 세계적으로 클라우드 서비스는 다양한 산업과의 융합을 통하여 산업의 생산성을 향상시키고 혁신을 가속화하는 핵심 인프라로써 지속적인 시장규모의 확대와 전 산업으로의 확산이 전망되고 있다. 특히 COVID-19로 인한 글로벌 팬데믹 현상으로 인해 클라우드 서비스는 언택트 시대를 대응하기 위한 핵심 인프라로 인식하는 계기가 되었다. 그러나 아직 국내에서는 시장 확대를 위한 전 단계에 머물러 있는 것이 현실이다. 본 논문은 확장된 TAM을 통하여 각 산업별로 클라우드 서비스가 어떠한 경로로 사용자에게 수용될 수 있으며 어떠한 요인들이 클라우드 서비스를 사용자에게 수용과 회피의 영향을 미치는지를 실증 분석하고자 한다. 이를 위하여 클라우드 서비스 이용의도를 분석하기 위한 산업분야를 선정하고, 제안한 확장된 기술수용모델을 통하여 가설검정을 통해 각 산업별 클라우드 서비스 수용의도에 미치는 영향과 요인을 분석하였다. 산업분야는 교육, 금융, 제조, 의료의 4개의 산업분야를 선정하였고 TAM의 매개변수와 클라우드의 핵심특징과 기타 요인을 종합적으로 검토하여 요인을 도출하였다. 실증 분석을 수행한 결과 4개 산업분야별로 클라우드 서비스 수용의도에 영향을 미치는 요인들에 차이점이 나타났는데, 이는 산업별로 클라우드 서비스의 도입이나 이용에 대한 인식의 차이가 있음을 의미한다. 궁극적으로 본 연구를 통하여 산업별로 클라우드 서비스 이용의도를 파악하는데 도움을 줄 수 있을 뿐만 아니라 클라우드 서비스 제공자들이 각 산업에 클라우드 서비스를 확대하여 제공하는데 도움을 줄 수 있을 것으로 기대한다.
4차 산업혁명을 주도하는 기술로서 IoT, 빅데이터, 인공지능, CPS 등이 발전하면서 산업 현장에서 생산성과 효율성을 향상시키기 위한 디지털 트윈의 중요성이 부각되고 있다. 디지털 트윈은 실제 물리적 객체들의 디지털 복제로서, 객체의 속성과 상태를 유지하며 작동하는 가상 모델이다. CPS는 사이버 세계와 물리 세계의 상호작용을 위한 시스템으로, 디지털 트윈은 CPS의 고급형 기술로 볼 수 있다. 디지털 트윈은 AI, XR, 5G 등 다양한 요소 기술의 등장으로 구현 속도가 가속화되었다. 센서 기술의 발전과 IoT, 인공지능, 빅데이터, 클라우드 등의 관련 기술 발전으로 디지털 트윈 시장이 성장하고 있다. 이에 따라 기업들은 비즈니스 인텔리전스와 관련된 솔루션을 도입하여 프로세스 최적화, 비용 효율성, 생산성을 향상시키는 경향이 있다. 본 연구에서는 디지털 트윈 기술과 CPS를 결합하여 이기종 로봇의 실시간 3D 디지털 트윈을 구축하는 것이 목표이다. 이를 위해 유비씨의 FLEXING CPS와 FLEXING EDGE를 활용하여 데이터 수집과 관리를 수행한다. 프로젝트 구성원은 프로토콜 설정, 데이터 수집 및 전달, 3D 디지털 트윈 시뮬레이션을 담당한다. 이를 통해 CPS와 디지털 트윈을 통합한 기술의 가능성을 확인하고, 산업 현장에서 생산성과 효율성을 향상시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.