• Title/Summary/Keyword: Production module

Search Result 545, Processing Time 0.033 seconds

Actinodura roseorufa에서 생산되는 UK-58,852로부터 PKS type I 에 관련된 생합성 유전자의 분리 및 분석

  • Kim, Ja-Yong;Lee, Ju-Ho;Kim, Dae-Hui;Kim, Dong-Hyeon;Song, Jae-Gyeong;Lee, Hui-Chan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.660-664
    • /
    • 2000
  • To clone genes related UK-58,852 production, genomic DNA of strain Actinodura roseorufa was used for the construction of genomic library using pOJ446 cosmid vector. The genomic library was screened rising dehydratase PCR product and eryA gene as a DNA hybridization probe. pHD54 was isolated, which contained an approximately 35kb of inserted DNA. BamHI, SmaI and sonicater fragments hybridized to eryA probe. All of pHD54 BgmHI, SmaI and sonicater fragments were subcloned into pGEM7 and some fragments which hybridized to eryA probe were sequenced. The nucleotide sequence was analysed using BLAST program. The sequence identities were observed in KS,AT, KR, ER and PKS loading domains. Also oxidoreductase showed similarity to rifamycin module10, and dTDP-D-glucose 4,6 dehydratase and TDP-D-glucose synthase involved in biosynthesis of sugar showed similarity to Streptomyces argillaceus.

  • PDF

Annual Energy Performance Evaluation of Zero Energy House Using Metering Data (실측데이터를 이용한 에너지제로주택의 연간 에너지성능평가)

  • Lim, Hee-Won;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Purpose: In this study, we evaluate the annual energy performance of the detached house which was designed with the aim of zero energy. Method: The experimental house which was constructed in Gonju Chungnam in 2013, is the single family detached house of light weight wood frame with $100m^2$ of heating area. Thermal transmittance of roof (by ISO 10211) and building external walls are designed as $0.10W/m^2K$ and $0.14W/m^2$ respectively and low-e coating vacuum window glazing with PVC frame was installed. Also grid connected PV system and natural-circulation solar water heater was applied and 6kWp capacity of photovoltaic module was installed in pitched roof and $5m^2$ of solar collector in vertical wall facing the south. We analyzed the 2014 annual data of the detached house in which residents were actually living, measured though web-based remote monitoring system. Result: First, as a result, total annual energy consumption and energy production (PV generation and solar hot water) are 7,919kWh and 7,689kWh respectively and the rate of energy independence is 97.1% which is almost close to the zero energy. Second, plug load and hot water of energy consumption by category showed the highest numbers each with 33% and 31%, with following space heating 24%, electric cooker 8%, lighting 3% in order. Hot water supply is relatively higher than space heating because high insulation makes it decreased.

Development of Contact-Type Thickness Measurement Machine using LVDT Sensors (LVDT센서를 이용한 접촉식 두께자동측정기 개발)

  • Shin, Ki-Yeol;Hwang, Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.151-159
    • /
    • 2015
  • In this study, we developed an automated contact-type thickness measurement machine that continuously and precisely measures the thickness of a PCB module product using multi-LVDT sensors. The system contains a measurement part to automatically measure the thickness in real time according to the set conditions with an alignment supply unit and unloading unit to separate OK and NG products. The sensors were calibrated before assembly in the measuring machine, and precision and accuracy performance tests were also performed to reduce uncertainty errors in the measurement machine. In the calibration test, the precision errors of the LVDT sensor were determined to be $1-3{\mu}m$ as 0.1% at the measuring range. A measurement error of 0.8 mm and 1.0 mm thickness test standards were found to be $1{\mu}m$ and $4{\mu}m$, and the standard deviations of two 1.0 mm products were measured as $14{\mu}m$ and $8{\mu}m$, respectively. In the measurement system analysis, the accuracies of test PCB standards were found to be $2{\mu}m$ and $3{\mu}m$, respectively. From the results of gage repeatability and reproducibility (R & R) crossed, we found that the machine is suitable for the measurement and process control in the mass production line as 7.92% of total gage R & R and in seven distinct categories. The maximum operating speed was limited at 13 pcs/min, showing a value good enough to measure.

Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness (박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Lim, Kee-Joe;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.108-112
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 90 % of the market, despite the development of a variety of thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon photovoltaic remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner thickness of silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials of different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With lower paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 130 micron thickness of the wafer even though the conversion efficiency decrease of 0.5 % occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al paste application.

  • PDF

Development of the 3-D Fracture Network Analysis and Visualization Software Modules (삼차원 불연속면 연결구조 해석 및 가시화 소프트웨어 모듈 개발)

  • Noh, Young-Hwan;Choi, Yosoon;Um, Jeong-Gi;Hwang, Sukyeon
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.261-270
    • /
    • 2013
  • As part of the development of the 3-D geologic modeling software, this study addresses on new development of software modules that can perform the analysis and visualization of the fracture network system in 3-D. The developed software modules, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, are coded on Microsoft Visual Studio platform using the MFC and OpenGL library supported by C++ program language. Each module plays a role in construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software modules for analysis and visualization of the 3-D fracture network system can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses. All these benefits will further enhance the economic competitiveness of the domestic software industry.

A Study on non-linear trajectory shaped apparatus applied solar tracking device (비선형 궤적형상을 적용한 태양광 추적장치에 대한 연구)

  • Han, Jae-Hyeon;Moon, Chae-Joo;Chang, Young-Hak;Choi, Man-Soo;Kim, Young-Gon;Jeong, Moon-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1277-1284
    • /
    • 2015
  • In this paper, 1-axis tracking mechanism of solar-cell panel, which is able to rotate from -90 degree to +90 degree for maintaining always perpendicular between solar-cell panel and sun, was analyzed. This paper propose the non-linear shaped guidance and analyze mathematical formulation of non-linear shape. This analysis shows that it is able to identify the non-linear shaped guidance. Especially, even though the length of rotating link have changed, the non-linear shaped guidance could be confirm with proper size. As effectiveness of this result, 10% efficiency rising is estimated compared to the conventional 1-axis tracking mechanism and also optimal non-linear shaped guidance can be suggested for various size of solar-cell panel. Therefore the flexible mass-production is possible for various size of non-linear shaped guidance.

Development of Moving Average Prediction Diagnostic Module for Vibration Parameter Influenced by Environmental Factors (환경적 요인과 연관된 진동 파라메터를 진단하기 위한 이동평균 예측 진단 모듈 개발)

  • Oh, Se-Do;Kim, Young-Jin;Lee, Tae-Hwi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.797-804
    • /
    • 2013
  • In this study, the authors develop a methodology for a diagnostic system with a vibration parameter that is influenced by environmental factors. The data tends to have a varying average over time. Often, these features are found in statistical data retrieved from a production line. If we utilize existing statistical techniques for these features, we could derive an incorrect diagnostic conclusion based on the different average values. To overcome the limitations of previous methods, the authors apply a function analyzed through regression analysis to predict the mean value and corresponding upper and lower limits at each stage. This technique also provides corresponding statistical parameters in varying dynamic means. To validate the proposed methods, we retrieve data from the engine assembly line of H Motors and verify the results.

Reliability Growth Management for Armed Vehicle : Launcher System Case Study (기동장비 신뢰도 성장 관리 연구 : 발사대 체계 사례)

  • Lee, YJ;Bae, GB;Heo, YM;Seo, JH;Kim, SB;Choi, JK;Park, WJ
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.981-994
    • /
    • 2017
  • Purpose: In this study, the reliability growth management procedures for armed vehicle is suggested and an illustrative case study of launcher system is given. Methods: Crow-AMSAA model is adopted to manage reliability growth of armed vehicle using failure data acquired from development test phase to field operation phase. Between the development test phase and the production phase, the suggested reliability growth procedures for armed vehicle entails accelerated life test of the selected module whose design is changed to improve its reliability for assuring the target system reliability. And it can be verified through estimating the system reliability based on the failure data of field operation phase. Results: It is shown that the proposed reliability growth management procedures are effective for armed vehicle based on the case study of launcher system. After estimating the reliability of launcher system at every development test, some items are selected to change their designs for improving reliability. Accelerated life test is performed to prove the reliability improvement and finally it is verified through the field operation. Conclusion: The reliability growth management procedures for armed vehicle is suggested and the case study of launcher system shows it can be effective for managing the reliability growth of the armed vehicle.

Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell (염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석)

  • Jo, Seulki;Lee, Kyungjoo;Song, Sangwoo;Park, Jaeho;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF

Low-costBacksheet Materials with Excellent Resistance to Chemical Degradation for Photovoltaic Modules (태양전지모듈용 고내구성 저가형 백시트)

  • Pyo, Se Youn;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally friendly energy-conversion devices to generate electricity via the photovoltaic effect of semiconductors on solar energy. One of key elements in PV modules is "Backsheet," a multi-layered film to protect the devices from a variety of chemicals including water vapor. A representative Backsheet is composed of polyvinyl fluoride (PVF) and poly(ethylene terephthalate) (PET). PVF is relatively expensive, while showing excellent resistance to chemical attacks. Thus, it is necessary to develop alternatives which can lower its high production cost and guarantee lifetime applicable to practical PV modules at the same time. In this study, PET films with certain levels of crystallinity were utilized instead of PVF. Since it is well known that PET is suffering from trans-esterification and hydrolysis under a wide pH range, it is needed to understand decomposition behavior of the PET films under PV operation conditions. To evaluate their chemical decomposition behavior within a short period of times, accelerated decomposition test protocol is developed. Moreover, electrochemical long-term performances of the PV module employing the PET-based Backsheet are investigated to prove the efficacy of the proposed concept.