• Title/Summary/Keyword: Product Release

Search Result 392, Processing Time 0.025 seconds

Core Release Model Evaluation in the ISAAC Code for PHWR

  • Song Yong-Mann;Park Soo-Yong;Kim Dong-Ha;Kim Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.36-46
    • /
    • 2004
  • The ISAAC fission product release calculation is based on detailed FPRAT models developed by Jaycor. For volatile fission product release calculations, either the Cubicciotti steam oxidation correlation or the NUREG-0772 correlation is used. In this study, evaluation is carried out for these volatile fission product release models. As a result, in the case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, the NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option is evaluated to show mitigated conservative results. In addition, a sensitivity study on detailed core nodalization is performed. In the study, 380 horizontal fuel channels in the Wolsong plant are nodalized into 12 (6 channels per loop, $3{\times}3$ Core Pass) representative channels and detailed by 16/20/24 channels. For reference accidents, LOAH and large LOCA are selected as representing high and low pressure sequences, respectively. According to the results, the original 12 channel approach with $3{\times}3$ core passes is evaluated to be sufficient as an optimal scheme.

Release Planning in Software Product Lines Using a Genetic Algorithm (유전자 알고리듬을 이용한 소프트웨어 제품라인의 출시 계획 수립)

  • Yoo, Jaewook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.142-148
    • /
    • 2012
  • Release planning for incremental software development is to select and assign features in sequence of releases along a specified planning horizon. It includes the technical precedence inherent in the features, the conflicting priorities as determined by the representative stakeholders, and the balance between required and available resources. The complexity of this consideration is getting more complicated when planning releases in software product lines. The problem is formulated as a precedence-constrained multiple 0-1 knapsack problem. In this research a genetic algorithm is developed for solving the release planning problems in software product lines as well as tests for the proposed solution methodology are conducted using data generated randomly.

A Greedy Genetic Algorithm for Release Planning in Software Product Lines (소프트웨어 제품라인의 출시 계획 수립을 위한 탐욕 유전자 알고리듬)

  • Yoo, Jaewook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.17-24
    • /
    • 2013
  • Release planning in a software product line (SPL) is to select and assign the features of the multiple software products in the SPL in sequence of releases along a specified planning horizon satisfying the numerous constraints regarding technical precedence, conflicting priorities for features, and available resources. A greedy genetic algorithm is designed to solve the problems of release planning in SPL which is formulated as a precedence-constrained multiple 0-1 knapsack problem. To be guaranteed to obtain feasible solutions after the crossover and mutation operation, a greedy-like heuristic is developed as a repair operator and reflected into the genetic algorithm. The performance of the proposed solution methodology in this research is tested using a fractional factorial experimental design as well as compared with the performance of a genetic algorithm developed for the software release planning. The comparison shows that the solution approach proposed in this research yields better result than the genetic algorithm.

Effect analysis of ISLOCA pathways on fission product release at Westinghouse 2-loop PWR using MELCOR

  • Kim, Seungwoo;Park, Yerim;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2878-2887
    • /
    • 2021
  • As the amount of fission product released from ISLOCA was overestimated because of conservative assumptions in the past, several studies have been recently conducted to evaluate the actual release amount. Among several pathways for the ISLOCA, most studies were focused on the pathway with the highest possibility. However, different ISLOCA pathways may have different fission product release characteristics. In this study, fission product behavior was analyzed for various pathways at the Westinghouse two-loop plant using MELCOR. Four pathways are considered: the pipes from a cold leg, from a downcomer, from a hot leg to the outlet of RHR heat exchanger, and the pipe from the hot leg to the inlet of RHR pump (Pathway 1-4). According to the analysis results, cladding fails at around 2.5 h in Pathways 1 and 2, and on the other hand, about 3.3 h in Pathways 3 and 4 because the ISLOCA pathways affect the safety injection flow path. While the release amount of cesium and iodine ranges between 20 and 26% in Pathways 1 to 3, Pathway 4 allows only 5% to the environment because the break location is submerged. Also, as more than 90% of cesium released to the environment passes through the personnel door, reinforcing the pressure capacity of the doors would be a significant factor in the accident management of the ISLOCA.

Effects of pH, Alkalinity and Chloride on Release of Corrosion By-product in Copper Pipes (pH, 알칼리도, 염소이온이 동관의 부식 부산물 용출에 미치는 영향)

  • 김선일;곽필재;이운기;우달식;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.75-83
    • /
    • 1999
  • In this research, the has been speculation about effects of pH, alkalinity, and chloride, each of which are major factors in water for the corrosion of copper pipes frequently used as the distribution system throughout the world. It is believed that these factors release a corrosion by-product. The results show the following that the first, for each water sample of pH 7, 8 and 9, various concentrations of alkalinity at 10, 50, 100, 150 mg/L was tested. It was found that conditions of higher pH led to decreased concentrations of copper by-product. For each pH, higher alkalinity produced higher concentrations of copper by-product. the second, higher chloride concentrations led to decreased concentrations of copper by-product. Apparently this was due to the Nantokite(CuCl) formation on the inner walls of the copper pipes with the passage of time. The third, when 25, 50mg/L of chloride were added, the average decreasing rate of copper release concentration was 45.7, 66.7%, respectively.

  • PDF

An Exact Solution Approach for Release Planning of Software Product Lines (소프트웨어 제품라인의 출시 계획을 위한 최적해법)

  • Yoo, Jae-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.57-63
    • /
    • 2012
  • Software release planning model of software product lines was formulated as a precedence-constrained multiple 0-1 knapsack problem. The purpose of the model was to maximize the total profit of an entire set of selected features in a software product line over a multi-release planning horizon. The solution approach is a dynamic programming procedure. Feasible solutions at each stage in dynamic programming are determined by using backward dynamic programming approach while dynamic programming for multi-release planning is forward approach. The pre-processing procedure with a heuristic and reduction algorithm was applied to the single-release problems corresponding to each stage in multi-release dynamic programming in order to reduce the problem size. The heuristic algorithm is used to find a lower bound to the problem. The reduction method makes use of the lower bound to fix a number of variables at either 0 or 1. Then the reduced problem can be solved easily by the dynamic programming approaches. These procedures keep on going until release t = T. A numerical example was developed to show how well the solution procedures in this research works on it. Future work in this area could include the development of a heuristic to obtain lower bounds closer to the optimal solution to the model in this article, as well as computational test of the heuristic algorithm and the exact solution approach developed in this paper. Also, more constraints reflecting the characteristics of software product lines may be added to the model. For instance, other resources such as multiple teams, each developing one product or a platform in a software product line could be added to the model.

On the use of spectral algorithms for the prediction of short-lived volatile fission product release: Methodology for bounding numerical error

  • Zullo, G.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1195-1205
    • /
    • 2022
  • Recent developments on spectral diffusion algorithms, i.e., algorithms which exploit the projection of the solution on the eigenfunctions of the Laplacian operator, demonstrated their effective applicability in fast transient conditions. Nevertheless, the numerical error introduced by these algorithms, together with the uncertainties associated with model parameters, may impact the reliability of the predictions on short-lived volatile fission product release from nuclear fuel. In this work, we provide an upper bound on the numerical error introduced by the presented spectral diffusion algorithm, in both constant and time-varying conditions, depending on the number of modes and on the time discretization. The definition of this upper bound allows introducing a methodology to a priori bound the numerical error on short-lived volatile fission product retention.

A Ternary Polymeric Matrix System for Controlled Drug Delivery of Highly Soluble Drug with High Drug Loading : Diltiazem Hydrochloride (염산 딜티아젬의 방출을 제어하기 위한 삼중 폴리머 매트릭스 시스템)

  • Kim, Hyun-Jo;Fassihi, Reza
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • The purpose of this study was to use a ternary polymeric matrix system for high drug loading of a highly soluble drug for controlled release delivery. The controlled drug delivery of diltiazem HCl (solubility > 50% in water at $25^{\circ}C$) with high loading dose (the final loading dose of drug was 34%) from a ternary polymeric matrix (gelatin, pectin, HPMC) was successfully accomplished. This simple monolithic system with 240 mg drug loading provided near zero-order release over a 24 hour-period by which time the system was completely dissolved. The release kinetics of diltiazem HCl tablet with high loading dose from the designed ternary polymeric system was dependent on the ratios of HPMC : pectin binary mixture. The release rate increased as pectin : HPMC ratio were increased. Swelling behavior of the ternary system and the ionic interaction of formulation components with cationic diltiazem molecule appear to control drug diffusion and the release kinetics. Comparable release profiles between commercial product and the designed system were obtained. The binding study between gelatin with diltiazem HCl showed the presence of two binding sites for drug interaction with subsequent controlled diffusion upon swelling. This designed delivery system is easy to manufacture and drug release behavior is highly reproducible and offers advantages over the existing commercial product.

  • PDF

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

Analysis of fission product reduction strategy in SGTR accident using CFVS

  • Shin, Hoyoung;Kim, Seungwoo;Park, Yerim;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.812-824
    • /
    • 2021
  • In order to reduce risks from the Steam Generator Tube Rupture (SGTR) accident and to meet safety targets, various measures have been analyzed to minimize the amount of fission product (FP) release. In this paper, we propose an introduction of a Containment Filtered Venting System (CFVS) connected to the steam generator secondary side, which can reduce the amount of FP release while minimizing adverse effects identified in the previous studies. In order to compare the effect of new equipment with the existing strategy, accident simulations using MELCOR were performed. As a result of simulations, it is confirmed that CFVS operation lowers FP release into the environment, and the release fractions are lower (minimum 0.6% of the initial inventory for Cs) than that of the strategy which intends to depressurize the primary system directly (minimum 15.2% for Cs). The sensitivity analyses identify that refill of the CFVS vessel is a dominant contributor reducing the amount of FP released. As the new strategy has the possibility of hydrogen combustion and detonation in CFVS, the installation of an igniter inside the CFVS vessel may be considered in reducing such hydrogen risk.