
Journal of the Society of Korea Industrial and Systems Engineering
Vol. 35, No. 2, pp.57—63, June 2012.

소프트웨어 제품라인의 출시 계획을 위한 최적해법

유 재 욱†

동아 학교 경 학 경 학과 조교수

An Exact Solution Approach for Release Planning of
Software Product Lines

Jaewook Yoo†

Department of Business Administration, Dong-A University

소 트웨어 개발에 있어서 소 트웨어를 시장에 출시하는 계획을 수립하는 것은 소 트웨어를 이루고 있는 기능

들을 구 하는 데 제약이 되는 조건들(기술, 자원, 험, 산 등)을 만족하면서 계획된 출시기간에 이들 기능들을
할당하는 일이다. 이와 같이 소 트웨어 출시를 계획하는 것은 소 트웨어 제품라인에 해서 고려할 때 더욱 복잡

해진다. 본 연구에서는 소 트웨어 제품라인에 있어서 소 트웨어 출시 계획을 수립하기 한 문제를 우선순 제

약하의 다수 0-1 배낭문제로 수리 모형화하고, 이를 풀기 한 최 해법이 개발된다. 최 해법은 동 계획법이 주

가 되고, 문제의 크기를 이기 하여 휴리스틱과 축소방법이 이용된다.

Keywords：Release Planning, Software Product Lines, Dynamic Programming, Precedence-Constrained Multiple 0-1 Knapsack
Problem

1. Introduction1)

Software product lines are built of a reusable platform
common to the whole software product family and specific
variants sharing the platform. The concept of software prod-
uct lines is considered as a viable and important software
development paradigm allowing companies under certain
conditions to realize order-of-magnitude improvements in
time to market, cost, productivity, quality, and other business
drivers [1].

Release planning for incremental software development is
to assign features to release such that most important techni-
cal, resource, risk and budget constraints are met. Without
good release planning critical features are jammed into the

release late in the cycle without removing features or adjust-
ing dates. This might result in unsatisfied customers, time
and budget overruns, and a significant loss in market share
[3]. Release planning for software product lines involves a
number of new aspects, which are not applicable in tradi-
tional one. It has to consider multiple products being devel-
oped by multiple teams for different customers.

Currently, there are few models for release planning for
software product lines that allows addressing the problem
in a rigorous formalized manner finding optimal solutions.
Although Ullah and Ruhe [6] developed a comprehensive
and formalized model for software release planning in soft-
ware product lines, they mapped release planning problem
for software product lines to use existing functionality of

논문 수일：2012년 03월 06일 게재확정일：2012년 03월 30일

†교신 자 jyoo@dau.ac.kr
※ This work was supported by the Dong-A University research fund.

유 재 욱58

the ReleasePlannerTM decision support system developed for
release planning of one product. Their solutions are not guar-
anteed to be optimal.

Release Matrix approach proposed by Taborda [5] pro-
vided a holistic view of software product lines’ release
management. However, it lacked the model and its solution
approach needed to obtain the optimal solutions.

The main contribution of this article is the formulation
of a mathematical model and development of a solution
methodology for selecting and assigning features or require-
ments in sequence of releases for software product lines,
along a specified planning horizon. The problem is for-
mulated as a precedence-constrained multiple 0-1 knapsack
problem.

The proposed solution methodology in this research can
be viewed as a dynamic programming approach. The im-
bedded-state approach is used to reduce a multi-dimensional
dynamic programming to a one-dimensional dynamic pro-
gramming over a specified release planning horizon. The fea-
sible solutions are generated by applying the backward dy-
namic programming approach to the single-release problem
corresponding to each stage, as well as a pre-processing
method is applied to reduce the problem size at each stage
which can be solved easily by the dynamic programming
approach.

In addition to this introductory section (Section 1), this
article contains four more sections. Section 2 presents the
mathematical formulation of the problem and the overall sol-
ution approach. Section 3 provides the description of each
procedural component of the proposed solution methodology.
Section 4 shows a numerical example and includes a short
discussion of relevant aspects. Finally, section 5 consists of
a summary along with conclusions and recommendations.

2. Model and Solution Approach

2.1 Model

In a software product line there are two types of features,
i.e. core asset features of which a platform is composed, and
product specific features. In this model it is assumed that
these two types of features are already decided during the
scoping process and core asset features are used by all the
products while each product specific feature is required by
only one of the products in the software product line.

Therefore, the set of features which platform or product k
consists of is given F(k); ⋃ ={1, 2, …, I}. These fea-
tures can be assigned to one of the T possible release options.
This is described by decision variable = 1 if feature i
is assigned to release t∈{1, 2, …, T} and = 0 if feature
i is postponed. The model considers the precedence relation
among features which imposes to release features in a certain
order. Let Ct be an available resource capacity at release
t and wit an amount of development resources which feature
i requires at release t.

Stakeholders are extremely important in release planning.
Assume a set of stakeholder S = {S(1), …, S(q)}. Each stake-
holder q can be assigned relative importance λ(q)∈{1,…,
9}. λ(q) = 1 indicates the lowest and λ(q) = 9 the highest
degree of stakeholder importance. Each stakeholder priori-
tizes every feature based on two criteria using a nine point
scale. The first criterion is represented by value(q, i) and
the second criterion is represented by urgency(q, i).

The objective is to maximize a function P(x) among all
release plans x subject to satisfaction of resource, precedence,
and feature-selection constraints described in the model. The
function P(x) depends on a number of factors such as the
value of the release, the importance of stakeholders, and the
urgency of a feature and its value to stakeholders. It is de-
fined as follows.

 ∑∑∈
with × × (1)

In (1), (t) expresses the relative (normalized to 1) im-
portance of release t. The mathematical model is referred
to as Problem (P) and is formulated in relationships (2)-(6).

Problem(P)

 ∑
 ∑∈ (2)

 ∑∈ ≤ for all i, k, t (3)

∑
 ≥ for all i, j, t (4)

∑
 ≤ for all i (5)

 ∈ for all i, t (6)

In the formulation of Problem (P) the objective function (2)
being maximized is defined as (1); the resource constraint
set (3) indicates that the resource consumption by the se-
lected features which platform or product k consists of cannot

소프트웨어 제품라인의 출시 계획을 위한 최적해법 59

exceed the available resource at each release t; the prece-
dence constraint set (4) ensures possible dependencies be-
tween features in software product line over release planning
horizon; the feature-selection constraint set (5) forces the
model to assign a feature to any release planning horizon
or delay its release; and constraint set (6) imposes the in-
tegrality of the decision variables.

2.2 Solution Approach

Dynamic programming approach is developed to solve the
precedence-constrained multiple 0-1 knapsack problem to
optimality, as well as a pre-processing method is applied to
reduce the size of the problem at each stage.

In multi-release dynamic programming model, the prob-
lem is divided into smaller subproblems corresponding to
each single-release problem. The feature of the proposed al-
gorithm in this paper is its capability of reducing the state-
space which otherwise would present an obstacle in solving
multi-dimensional dynamic programming problems. This is
due to the use of the imbedded-state approach, which reduces
a multi-dimensional dynamic programming to a one-dimen-
sional dynamic programming. Morin and Marsten [2] applied
the imbedded-state approach to develop an algorithm for the
solution of nonlinear knapsack problems.

Moreover, a dynamic programming approach for a sin-
gle-release problem is used to identify feasible solutions to
the next release problem corresponding to the next stage in
the multi-release dynamic programming formulation. By
dominance test, feasible solutions dominated by any other
feasible solutions are eliminated and efficient solutions are
selected from the remaining set of release strategies. Then
the efficient solutions are used to generate potential solutions
for the next stage.

A pre-processing approach is performed on the single-
release problems corresponding to each stage in multi-release
dynamic programming model in order to make the problem
size reduced. It consists of a heuristic algorithm that finds
quickly a lower bound to be used to reduce the problem
size and a reduction method to make the size of the problem
smaller. The latter makes use of the lower bound and fixes
considerably many variables at either 0 or 1. Thus, eliminat-
ing the fixed variables, we are left with problems of much
smaller size that can be solved easily by the dynamic pro-
gramming algorithms at each stage.

The proposed approach can be divided into two procedures :

pre-processing method and dynamic programming. The step
1 is pre-processing procedure, and the dynamic programming
procedure consists of steps 2 and 3. A brief description of
each major component of the methodology is provided as
follows.

Step 1 : Pre-processing Procedure (heuristic and reduction
algorithm)

A heuristic algorithm finds a lower bound to the current
single-release problem corresponding to a stage in mul-
ti-release dynamic programming as well as a reduction
method makes use of the lower bound and fixes numerous
variables at either 0 or 1. Eliminating the fixed variables
at each stage results in much smaller size of the problem
that can be solved easily by the dynamic programming
approaches. The pre-processing approach is applied to
each stage in multi-release dynamic programming model.

Step 2 : Dynamic Programming for Single Release
A dynamic programming methodology is conducted to iden-
tify feasible solutions to single-release problems reduced
by the pre-processing procedure corresponding to each stage
in multi-release dynamic programming approach.

Step 3 : Dynamic Programming for Multiple Releases
Feasible solutions that are dominated by any other feasible
solutions are eliminated. The remaining set of feasible sol-
utions will be referred to as efficient solutions. The effi-
cient solutions at the stage representing the current release
planning are obtained and used to generate potential sol-
utions for the next stage.

3. Description of the Solution Method

3.1 Dynamic Programming for Multiple Releases

The dynamic programming model for multiple releases is
developed in a compact form of the separable nonlinear multi-
dimensional knapsack problem (NKP) as shown in Problem
(D), which is equivalent to Problem (P).

Problem (D)

 ∑

 ∑

 ≤ ≤ ≤

 ∈ t = 1, 2,…, T

유 재 욱60

where is a release strategy for a software product line

at release t; ⋯ , is a profit of strategy
, Wrt is the amount of resource (resource and feature-se-

lection) r taken by strategy for a software product line

at release t, is an available resource r, and = { :
precedence constraint and 0-1 integrality constraint}.

Allocation of resources to a software product line using
the dynamic programming approach results in the following
recursive relationship:

 ∈

where; ={; resource constraint, precedence constraint,
feature-selection constraint, and 0-1 integrality constraint}
and the state variable represents the amount of resource
c which is available for allocation at release n and is a T+I
dimensional vector. The vector is divided into two groups.
The first group is represented by T dimensional vector corre-
sponding to the resource in each release. The second group
is represented by I dimensional vector corresponding to se-
lection availability of features for the software product line.

Problem (D) can be decomposed into subproblems that can
be considered as a single stage in the multi-release dynamic
programming problem. In each single release, the feasible
solutions are obtained by applying a single-release dynamic
programming approach and the efficient solutions that are
not dominated by any other feasible solutions are obtained
by dominance testing.

Let
 denote the set of feasible solutions of Problem

(D) until stage n. The feasible solution ⋯

∈ is said to be dominated by the feasible solution
′ ∈,

if we have both

∑

′
≤∑

 ∀

and

∑

′≥∑

with at least one strict inequality. If ∈ is not dominated

by any other element of
, then we say that is efficient

with respect to
. Then the efficient solutions are used to

generate potential solutions for the next stage [2].

3.2 Dynamic Programming for Single-Release

In order to obtain feasible and efficient solutions in each
release, a dynamic programming approach is applied to sin-
gle-release problems corresponding to each stage in a mul-
ti-release dynamic programming. Precedence relations be-
tween features in the model can be represented by means
of a direct acyclic graph, where nodes correspond to features
in a one-to-one way.

In an acyclic graph ′∈ is a descendant
of ∈ if there exist an integer ≥ and a sequence of
vertices ⋯ ′ such that

 ∈ for I = 0, 1, …, k-1.

This is denoted as ′ , and is an ancestor of ′ .
Note that is a descendant (ancestor) of itself. Let the sets
of all descendants and all ancestors of be denoted as

 ′∈ ′
 ′∈′ .

For a subset of vertices ⊆, denotes the subgraph
of G0 restricted to V with the corresponding edge set

 ∈∈ ×.

If there is no confusion, is simply denoted as G = (V,
E). By top(G), we mean the vertex with the smallest index
in V, namely,

top(G) = vmin{i|vi∈V}

Subgraph G is said to be a singleton if |V | = 1, and is said
to be empty if .

Corresponding to an arbitrary subgraph G = (V, E), we intro-
duce a restriction of Problem (P) to G in the form of a single-
release problem at stage t as shown in Problem (G, c) :

Problem (G, c) :

 ∑∈
 ∑∈ ≤ for all k

 ≥ for all(i, j)∈ E

∈ for all vi ∈ V

소프트웨어 제품라인의 출시 계획을 위한 최적해법 61

This is also referred to as subproblem G for simplicity. Note
also that, if we fix

in Problem (G, c), the objective value is ptop(G) plus the opti-
mal value from the remaining nodes V \ with the
reduced resource capacity . On the other hand, if
we set

 ,

all the descendants of top(G) are excluded, and we will have
the subgraph with node set V \Dtop(G).

Define the left and right children of G by

GL = G|V\{top(G)},

GR = G|V\Dtop(G)}.

Then, the optimal values from these children are

 ,

and the optimal decision for is given by

 ≥

For the case of singleton, i.e., , we have immediately

 ≥

with

 ≥

For the empty graph, we have

 .

3.3 Greedy Algorithm

The following is a greedy algorithm that tries to select
features, one by one, as far as the resource is available at
the current release t. After applying the greedy algorithm
at release t, the input graph in consideration at the next release
t+1 is one reduced by deleting the features released at release
t obtained by a reduction method and single-release dynamic

programming approach. The procedure of the greedy algorithm
is shown as follows [4].

Let and be the current profit and weight of the graph
G at release t.

Step 1 : Set = {}, = 0, = 0.
Step 2 : Look for a feature j such that :

(i) = 0,
(ii) = 1, ∀ ∈,
(iii) ≤

If such a feature j is found, go to Step 3.
Otherwise, stop.

Step 3 : Set = 1, = +, = +, and go to Step 2.

The output (,) from this algorithm is referred to as the
value for applying reduction algorithm to reduce the problem
size.

3.4 Reduction Algorithm

Let be an optimal solution to the Problem (G, c).
For each feature i, we define

 ∑∈
 ∑∉

Then, the following proposition is straightforward.

Proposition. (i) implies ;

(ii) implies .

Proof.
(i) If , we have for all ∈. Then,

∈

 ≥

 which is a contradiction.

(ii) If , we have for all ∈. Then,

∈

 ≤

 Therefore, is not optimal, which is also a contradiction.
This proposition serves as a pegging test [4] to fix some

of the variables at either 0 or 1, and thus reduce the size
of the single-release problems.

유 재 욱62

4. Numerical Example

A numerical example has been developed to show how
well the solution approaches proposed in this article work
on it. Consider a software product line with two products
(product A and product B), as well as a platform. There
are eight candidate features in the product line. The assign-
ment of features to products and platform and their inter-
dependencies are shown in <Figure 1>.

In this example we are considering T = 2 releases. There
is one development team resource and its capacity is =
35 person days and = 31 person days for release t = 1
and 2, respectively. The relative importance of release are
(1) = 0.7 and (2) = 0.3, respectively. There are two stake-
holders S(1) and S(2) with relative weights (1) = 8 and (2)
= 5. The resource requirements for the eight features are

given in table 1. Stakeholders’ votes on all of the features
for value and urgency criteria are also shown in <Table 1>.

The proposed solution approaches in this article is applied
to the above example as follows.

[Greedy Algorithm]
At release t = 1, feature 1, 2, 3, and 7 are selected with the
profit of 1342 by using the greedy algorithm.

[Reduce the problem]
<Table 2> gives and . From this and = 1342, we

can fix (subscript ♭ in <Table 2>) and

 (subscript # in <Table 2>) at release

t = 1 according to the proposition mentioned in section 3.4.
By eliminating the fixed features, the problem is reduced
to the problem regarding feature 4 and 7 only.

[Dynamic programming]
To get feasible solutions at release t = 1, single-release dy-
namic programming approach is applied to the reduced prob-
lem consisting of feature 4 and 7. As the result, the feasible

solutions at release t = 1 are

 and

 . These two feasible solutions are efficient since

they are not dominated by each other. Based on
, the remai-

ning problem considered at release t = 2 is the problem hav-
ing five features (4, 5, 6, 7, and 8) and their interdependencies

with = 31, while the remaining problem based on
 con-

sidered at release t = 2 is the problem having four features
(4, 5, 6, and 7) and their interdependencies with = 31.

1

2 34
A

A

B

BA
5 6

7

8

①→② Feature 1 precedes feature 2.
ⓕ Product specific feature
 Platform feature

<Figure 1> Graphical View of Feature

<Table 1> Effort Estimates and Stakeholdersʼ Votes

Feature
i

wi

Stakeholders S(1) Stakeholders S(2)

Value
(1, i)

Urgency
(1, i)

Value
(2, i)

Urgency
(2, i)

1 5 6 7 4 2

2 14 5 8 7 6

3 7 6 7 5 6

4 16 4 2 6 7

5 15 7 6 6 4

6 10 6 7 6 3

7 5 5 7 7 7

8 8 6 6 5 8

The pre-processing approach is applied to these two re-
maining problems again in order to reduce the problems’
size, as well as dynamic programming procedure is applied
to find the optimal solution. Then, the procedure is termi-

nated with an optimal solution

 , where

 and .

<Table 2> Reduction of the problem

Features Ancestors Descendants

1 1 1, 2, 3, 4, 5, 6, 7, 8 5 0#

2 1, 2 2, 3, 6, 7, 8 19 774#

3 1, 2, 3 3, 6, 7, 8 26 1145#

4 1, 4 4, 5, 6, 8 21 1342

5 1, 4, 5 5, 6, 8 36♭ 1534

6 1, 2, 3, 4, 5, 6 6, 8 67♭ 1853

7 1, 2, 3, 7 7, 8 31 1784

8 1, 2, 3, 4, 5, 6, 7, 8 8 80♭ 2151

소프트웨어 제품라인의 출시 계획을 위한 최적해법 63

5. Summary

Software release planning model of software product lines
was formulated as a precedence-constrained multiple 0-1
knapsack problem. The purpose of the model was to max-
imize the total profit of an entire set of selected features
in a software product line over a multi-release planning
horizon. The solution approach is a dynamic programming
procedure. Feasible solutions at each stage in dynamic pro-
gramming are determined by using backward dynamic pro-
gramming approach while dynamic programming for mul-
ti-release planning is forward approach.

The pre-processing procedure with a heuristic and reduc-
tion algorithm was applied to the single-release problems
corresponding to each stage in multi-release dynamic pro-
gramming in order to reduce the problem size. The heu-
ristic algorithm is used to find a lower bound to the
problem. The reduction method makes use of the lower
bound to fix a number of variables at either 0 or 1. Then
the reduced problem can be solved easily by the dynamic
programming approaches. These procedures keep on going
until release t = T. A numerical example was developed
to show how well the solution procedures in this research
works on it.

Future work in this area could include the development
of a heuristic to obtain lower bounds closer to the optimal
solution to the model in this article, as well as computational
test of the heuristic algorithm and the exact solution approach
developed in this paper. Also, more constraints reflecting the

characteristics of software product lines may be added to
the model. For instance, other resources such as multiple
teams, each developing one product or a platform in a soft-
ware product line could be added to the model.

References

[1] http://www.sei.cmu.edu/productlines.
[2] Morin, T. L. and Marsten, R. E.; “An algorithm for non-

linear knapsack problems,” Management science, 22(10) :
1147-1158, 1976.

[3] Penny, D.; “An Estimation-Based Management Frame-
work for Enhancive Maintenance in Commercial Soft-
ware Products,” Proceedings of the International Con-
ference on Software Maintenance, Montreal, Canada,
122-130, 2002.

[4] Samphaiboon, N. and Yamada, T.; “Heuristic and exact
algorithm for the precedence-constrained knapsack pro-
blem,” Journal of optimization theory and applications,
105(3) : 659-676, 2000.

[5] Taborda, L.; “Generalized Release Planning for Product
Line Architectures,” Proceedings of the SPLC, The
Third Software Product Lines Conference, Boston, USA,
238-254, 2004.

[6] Ullah, M. and Ruhe, G.; “Towards Comprehensive
Release Planning for Software Product Lines,” Proceed-
ings of the First International Workshop on Software
Product Management, Minneapolis/St. Paul, Minnesota,
USA, 55-59, 2006.

