• Title/Summary/Keyword: Product Effectiveness Analysis

Search Result 281, Processing Time 0.03 seconds

Problems of Benefit Sharing Support Policy and its Policy Effectiveness affecting the Firm Performance (성과공유제 지원정책의 문제점 분석 및 기업성과에 미친 효과성 연구)

  • Lee, Hongyeol;Lee, Eun-Ku
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.4
    • /
    • pp.237-245
    • /
    • 2018
  • The purpose of this study is to suggest the improvement plan for an effective benefit sharing support policy through empirical analysis on the benefit sharing operation of government as well as the benefit sharing support policy of government affecting firm performance. Therefore, this study analyzed current problems on benefit sharing operation of government as well as performed a survey for 225 participating and cooperation firms regarding firm performance. This study found some improvements such as insufficient diverse incentive measures leading to the difficulty of participating firm's increase and spread, insufficient substantial benefit sharing such a cash allocation between consignment firms, the increase of biz management system model failing to induce innovation of new technology or product, and difficult spread into 2nd, 3rd cooperative firms besides 1st ones, meanwhile, verifying the positive influence of government benefit sharing support policy on both participating and cooperation firms, especially on the performance of cooperation firms. As a further study, it is necessary to increase the objectiveness and accuracy of a research through verification of the interrelationships between firm statue and performance on the basis of more objective and quantitative data such a sales increase or R&D capability of cooperation firms.

A Model of the Antecedents of Consumers' Green Purchase Behavior (친환경제품구매 결정요인들에 관한 모델)

  • Kim, Yeonshin
    • Asia Marketing Journal
    • /
    • v.8 no.2
    • /
    • pp.1-26
    • /
    • 2006
  • In the growing field of green marketing there are various psychological influences that can lead to green purchase behavior. An understanding of these influences can lead to greater green marketing effectiveness. The purpose of this paper is to analyze the effects of several value types, environmental attitudes, and preference for product attributes on green purchase behavior. To this end, a conceptual model has been proposed and tested for empirical verification with the use of a survey. Data collected from 266 Korean respondents are analyzed using path analysis. Results provide support for the proposed model, demonstrating positive links among universalism, environmental attitudes, preference for environmental attribute, and green buying behavior. It indicates that individuals with universalism as a preferred value type are high in their environmental attitudes and finally, tend to buy green products through their preference for environmental attribute. The mediating role of preference for price is not significant between environmental attitudes and green purchase behavior. The present findings, in addition, contribute the width of understanding of various proenvironmental behaviors by focusing on green purchase behavior and surveying with a Korean sample. The implications for the practices of green marketing are discussed.

  • PDF

A Study on Conflict Prevention in the Site Selection of National Defense Facility Relocation Projects (중대재해 처벌 법의 실효성 제고를 위한 법적 쟁점 분석 및 경영자 안전보건관리 전략에 대한 연구)

  • Hoon Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.253-260
    • /
    • 2024
  • This study aims to analyze the key legal issues of the Serious Accidents Punishment Act (SAPA), which came into effect on 2022, in South Korea, and to propose practical occupational safety and health management strategies for business executives. The SAPA was introduced to prevent serious industrial accidents and protect workers' lives and safety. However, its effectiveness has been controversial due to the ambiguity of the law and uncertainty in its application. The study first provides an overview of the SAPA's main provisions and analyzes legal issues focusing on the punishment of business executives and the punitive damages system. Key issues identified include the ambiguity of "safety and health obligations," difficulties in proving causality, and unclear criteria for determining intent or gross negligence. Recent cases of serious accidents are examined to illustrate practical challenges in applying the law. Furthermore, the study compares the punitive damages system under the SAPA with that of the Product Liability Act and similar systems in the United States, United Kingdom, and Germany. This comparative analysis highlights the characteristics and problems of the Korean system, such as the unclear punitive nature, controversy over excessive compensation, and potential for abuse of litigation. Finally, the study proposes practical occupational safety and health management strategies for business executives to effectively respond to the SAPA and create safer workplaces. Key strategies include establishing a safety and health management system, conducting risk assessments, implementing safety education, managing subcontractor safety, and investing in safety and health.

Implementation Strategy for the Elderly Care Solution Based on Usage Log Analysis: Focusing on the Case of Hyodol Product (사용자 로그 분석에 기반한 노인 돌봄 솔루션 구축 전략: 효돌 제품의 사례를 중심으로)

  • Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.117-140
    • /
    • 2019
  • As the aging phenomenon accelerates and various social problems related to the elderly of the vulnerable are raised, the need for effective elderly care solutions to protect the health and safety of the elderly generation is growing. Recently, more and more people are using Smart Toys equipped with ICT technology for care for elderly. In particular, log data collected through smart toys is highly valuable to be used as a quantitative and objective indicator in areas such as policy-making and service planning. However, research related to smart toys is limited, such as the development of smart toys and the validation of smart toy effectiveness. In other words, there is a dearth of research to derive insights based on log data collected through smart toys and to use them for decision making. This study will analyze log data collected from smart toy and derive effective insights to improve the quality of life for elderly users. Specifically, the user profiling-based analysis and elicitation of a change in quality of life mechanism based on behavior were performed. First, in the user profiling analysis, two important dimensions of classifying the type of elderly group from five factors of elderly user's living management were derived: 'Routine Activities' and 'Work-out Activities'. Based on the dimensions derived, a hierarchical cluster analysis and K-Means clustering were performed to classify the entire elderly user into three groups. Through a profiling analysis, the demographic characteristics of each group of elderlies and the behavior of using smart toy were identified. Second, stepwise regression was performed in eliciting the mechanism of change in quality of life. The effects of interaction, content usage, and indoor activity have been identified on the improvement of depression and lifestyle for the elderly. In addition, it identified the role of user performance evaluation and satisfaction with smart toy as a parameter that mediated the relationship between usage behavior and quality of life change. Specific mechanisms are as follows. First, the interaction between smart toy and elderly was found to have an effect of improving the depression by mediating attitudes to smart toy. The 'Satisfaction toward Smart Toy,' a variable that affects the improvement of the elderly's depression, changes how users evaluate smart toy performance. At this time, it has been identified that it is the interaction with smart toy that has a positive effect on smart toy These results can be interpreted as an elderly with a desire to meet emotional stability interact actively with smart toy, and a positive assessment of smart toy, greatly appreciating the effectiveness of smart toy. Second, the content usage has been confirmed to have a direct effect on improving lifestyle without going through other variables. Elderly who use a lot of the content provided by smart toy have improved their lifestyle. However, this effect has occurred regardless of the attitude the user has toward smart toy. Third, log data show that a high degree of indoor activity improves both the lifestyle and depression of the elderly. The more indoor activity, the better the lifestyle of the elderly, and these effects occur regardless of the user's attitude toward smart toy. In addition, elderly with a high degree of indoor activity are satisfied with smart toys, which cause improvement in the elderly's depression. However, it can be interpreted that elderly who prefer outdoor activities than indoor activities, or those who are less active due to health problems, are hard to satisfied with smart toys, and are not able to get the effects of improving depression. In summary, based on the activities of the elderly, three groups of elderly were identified and the important characteristics of each type were identified. In addition, this study sought to identify the mechanism by which the behavior of the elderly on smart toy affects the lives of the actual elderly, and to derive user needs and insights.

Effects of the Group Coaching Program for the Promotion of Growth Orientation for University Students on Growth Orientation, Life Satisfaction, Perceived Stress, Positive Psychological Capital and Interpersonal Relationships: Based on the Model of the Social-Cognitive Approach to Motivation (대학생 성장지향성 증진 그룹코칭 프로그램이 성장지향성, 삶의 만족도, 지각된 스트레스, 긍정심리자본 및 대인관계에 미치는 효과: 사회인지동기모형을 기반으로)

  • Kyung, Ilsoo;Tak, Jinkook
    • Korean Journal of School Psychology
    • /
    • v.16 no.3
    • /
    • pp.231-263
    • /
    • 2019
  • The purpose of this study was to verify the effects of growth orientation, life satisfaction, perceived stress, positive psychological capital and interpersonal relationships in the group coaching program for the promotion of growth orientation for university students based on the model of the social-cognitive approach to motivation. The program consisted of eight topics: growth orientation, growth mindset and brain plasticity, self-directed goal setting, talent which is a product of ongoing effort, failure attitude and perspective change, positive emotion, thinking and behavior, value of growth orientation and self-coaching, respectively. The program comprised a total of eight sessions, 120 minutes each, and the final program was completed through a preliminary experiment with three university students. In order to verify the effectiveness of the program, 48 university students were divided into 16 in the experimental group, 16 in the comparative group, and 16 in the control group. The experimental group participated in the group coaching program to enhance the growth orientation based on the model of the social-cognitive approach to motivation developed in this study, the comparative group participated in a learning goal orientation improvement program based on an incremental implicit theory, and the control group did not carry out any program. Three groups were tested in pre, post, follow-up1(after 1 month) and follow-up2(after 3 months) in order to growth orientation, life satisfaction, perceived stress, positive psychological capital and interpersonal relationships. We performed analysis to confirm the homogeneity to the data of the three groups and to verify the interaction effects between times and groups. As a result, it was confirmed that the group coaching program to promote growth orientation, life satisfaction, perceived stress, positive psychological capital and interpersonal relationships had statistically significant effect and was more effective than the comparative program due to the larger effective size. Also, we confirmed that the coaching effect was sustained after the program was finished and more effectively maintained than the comparative program. Based on the results of this study, this study has academic implications because it verify the effectiveness of the group coaching for the promotion of the growth orientation by scient ic method.

An Evaluation Model for Software Usability using Mental Model and Emotional factors (정신모형과 감성 요소를 이용한 소프트웨어 사용성 평가 모델 개발)

  • 김한샘;김효영;한혁수
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.117-128
    • /
    • 2003
  • Software usability is a characteristic of the software that is decided based on learnability, effectiveness, and satisfaction when it is evaluated. The usability is a main factor of the software quality. A software has to be continuously improved by taking guidelines that comes from the usability evaluation. Usability factors may vary among the different software products and even for the same factor, the users may have different opinions according to their experience and knowledge. Therefore, a usability evaluation process must be developed with the consideration of many factors like various applications and users. Existing systems such as satisfaction evaluation and performance evaluation only evaluate the result and do not perform cause analysis. And also unified evaluation items and contents do not reflect the characteristics of the products. To address these problems, this paper presents a evaluation model that is based on the mental model of user and the problems, this paper presents a evaluation model that is based on the mental model of user and the emotion of users. This model uses evaluation factors of the user task which are extracted by analyzing usage of the target product. In the mental model approach, the conceptual model of designer and the mental model of the user are compared and the differences are taken as a gap also reported as a part to be improved in the future. In the emotional factor approach, the emotional factors are extracted for the target products and evaluated in terms of the emotional factors. With this proposed method, we can evaluate the software products with customized attributes of the products and deduce the guidelines for the future improvements. We also takes the GUI framework as a sample case and extracts the directions for improvement. As this model analyzes tasks of users and uses evaluation factors for each task, it is capable of not only reflecting the characteristics of the product, but exactly identifying the items that should be modified and improved.

Enhancing Predictive Accuracy of Collaborative Filtering Algorithms using the Network Analysis of Trust Relationship among Users (사용자 간 신뢰관계 네트워크 분석을 활용한 협업 필터링 알고리즘의 예측 정확도 개선)

  • Choi, Seulbi;Kwahk, Kee-Young;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.113-127
    • /
    • 2016
  • Among the techniques for recommendation, collaborative filtering (CF) is commonly recognized to be the most effective for implementing recommender systems. Until now, CF has been popularly studied and adopted in both academic and real-world applications. The basic idea of CF is to create recommendation results by finding correlations between users of a recommendation system. CF system compares users based on how similar they are, and recommend products to users by using other like-minded people's results of evaluation for each product. Thus, it is very important to compute evaluation similarities among users in CF because the recommendation quality depends on it. Typical CF uses user's explicit numeric ratings of items (i.e. quantitative information) when computing the similarities among users in CF. In other words, user's numeric ratings have been a sole source of user preference information in traditional CF. However, user ratings are unable to fully reflect user's actual preferences from time to time. According to several studies, users may more actively accommodate recommendation of reliable others when purchasing goods. Thus, trust relationship can be regarded as the informative source for identifying user's preference with accuracy. Under this background, we propose a new hybrid recommender system that fuses CF and social network analysis (SNA). The proposed system adopts the recommendation algorithm that additionally reflect the result analyzed by SNA. In detail, our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and trust relationship information between users when calculating user similarities. For this, our system creates and uses not only user-item rating matrix, but also user-to-user trust network. As the methods for calculating user similarity between users, we proposed two alternatives - one is algorithm calculating the degree of similarity between users by utilizing in-degree and out-degree centrality, which are the indices representing the central location in the social network. We named these approaches as 'Trust CF - All' and 'Trust CF - Conditional'. The other alternative is the algorithm reflecting a neighbor's score higher when a target user trusts the neighbor directly or indirectly. The direct or indirect trust relationship can be identified by searching trust network of users. In this study, we call this approach 'Trust CF - Search'. To validate the applicability of the proposed system, we used experimental data provided by LibRec that crawled from the entire FilmTrust website. It consists of ratings of movies and trust relationship network indicating who to trust between users. The experimental system was implemented using Microsoft Visual Basic for Applications (VBA) and UCINET 6. To examine the effectiveness of the proposed system, we compared the performance of our proposed method with one of conventional CF system. The performances of recommender system were evaluated by using average MAE (mean absolute error). The analysis results confirmed that in case of applying without conditions the in-degree centrality index of trusted network of users(i.e. Trust CF - All), the accuracy (MAE = 0.565134) was lower than conventional CF (MAE = 0.564966). And, in case of applying the in-degree centrality index only to the users with the out-degree centrality above a certain threshold value(i.e. Trust CF - Conditional), the proposed system improved the accuracy a little (MAE = 0.564909) compared to traditional CF. However, the algorithm searching based on the trusted network of users (i.e. Trust CF - Search) was found to show the best performance (MAE = 0.564846). And the result from paired samples t-test presented that Trust CF - Search outperformed conventional CF with 10% statistical significance level. Our study sheds a light on the application of user's trust relationship network information for facilitating electronic commerce by recommending proper items to users.

Optimization of Single-stage Mixed Refrigerant LNG Process Considering Inherent Explosion Risks (잠재적 폭발 위험성을 고려한 단단 혼합냉매 LNG 공정의 설계 변수 최적화)

  • Kim, Ik Hyun;Dan, Seungkyu;Cho, Seonghyun;Lee, Gibaek;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.467-474
    • /
    • 2014
  • Preliminary design in chemical process furnishes economic feasibility through calculation of both mass balance and energy balance and makes it possible to produce a desired product under the given conditions. Through this design stage, the process possesses unchangeable characteristics, since the materials, reactions, unit configuration, and operating conditions were determined. Unique characteristics could be very economic, but it also implies various potential risk factors as well. Therefore, it becomes extremely important to design process considering both economics and safety by integrating process simulation and quantitative risk analysis during preliminary design stage. The target of this study is LNG liquefaction process. By the simulation using Aspen HYSYS and quantitative risk analysis, the design variables of the process were determined in the way to minimize the inherent explosion risks and operating cost. Instead of the optimization tool of Aspen HYSYS, the optimization was performed by using stochastic optimization algorithm (Covariance Matrix Adaptation-Evolution Strategy, CMA-ES) which was implemented through automation between Aspen HYSYS and Matlab. The research obtained that the important variable to enhance inherent safety was the operation pressure of mixed refrigerant. The inherent risk was able to be reduced about 4~18% by increasing the operating cost about 0.5~10%. As the operating cost increases, the absolute value of risk was decreased as expected, but cost-effectiveness of risk reduction had decreased. Integration of process simulation and quantitative risk analysis made it possible to design inherently safe process, and it is expected to be useful in designing the less risky process since risk factors in the process can be numerically monitored during preliminary process design stage.

The Role of Open Innovation for SME's R&D Success (중소기업 R&D 성공에 있어서 개방형 혁신의 효과에 관한 연구)

  • Yoo, In-Jin;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.89-117
    • /
    • 2018
  • The Korean companies are intensifying competition with not only domestic companies but also foreign companies in globalization. In this environment, it is essential activities not only for large companies but also Small and Medium Enterprises (SMEs) to get and develop the core competency. Particularly, SMEs that are inferior to resources of various aspects, such as financial resources etc., can make innovation through effective R&D investment. And then, SMEs can occupy a competency and can be survive at the environment. Conventionally, the method of "self-development" by using only the internal resources of the company has been dominant. Recently, however, R&D method through cooperation, also called "Open Innovation", is emerging. Especially SMEs are relatively short of available internal resources. Therefore, it is necessary to utilize technology and resources through cooperation with external companies(such as joint development or contract development etc.) rather than self-development R&D. In this context, we confirmed the effect of SMEs' factors on sales in Korea. Specifically, the factors that SMEs hold are classified as 'Technical characteristic', 'Company competency', and 'R&D activity' and analyzed how they influence the sales achieved as a result of R&D. The analysis was based on a two-year statistical survey conducted by the Korean government. In addition, we confirmed the influence of the factors on the sales according to the R&D method(Self-Development vs. Open Innovation), and also observed the influence change in 29 industrial categories. The results of the study are summarized as follows: First, regression analysis shows that twelve factors of SMEs have a significant effect on sales. Specifically, 15 factors included in the analysis, 12 factors excluding 3 factors were found to have significant influence. In the technical characteristic, 'imitation period' and 'product life cycle' of the technology were confirmed. In the company competency, 'R&D led person', 'researcher number', 'intellectual property registration status', 'number of R&D attempts', and 'ratio of success to trial' were confirmed. The R&D activity was found to have a significant impact on all included factors. Second, the influence of factors on the R&D method was confirmed, and the change was confirmed in four factors. In addition, these factors were found that have different effects on sales according to the R&D method. Specifically, 'researcher number', 'number of R&D attempts', 'performance compensation system', and 'R&D investment' were found to have significant moderate effects. In other words, the moderating effect of open innovation was confirmed for four factors. Third, on the industrial classification, it is confirmed that different factors have a significant influence on each industrial classification. At this point, it was confirmed that at least one factor, up to nine factors had a significant effect on the sales according to the industrial classification. Furthermore, different moderate effects have been confirmed in the industrial classification and R&D method. In the moderate effect, up to eight significant moderate effects were confirmed according to the industrial classification. In particular, 'R&D investment' and 'performance compensation system' were confirmed to be the most common moderating effect by each 12 times and 11 times in all industrial classification. This study provides the following suggestions: First, it is necessary for SMEs to determine the R&D method in consideration of the characteristics of the technology to be R&D as well as the enterprise competency and the R&D activity. In addition, there is a need to identify and concentrate on the factors that increase sales in R&D decisions, which are mainly affected by the industry classification to which the company belongs. Second, governments that support SMEs' R&D need to provide guidelines that are fit to their situation. It is necessary to differentiate the support for the company considering various factors such as technology and R&D purpose for their effective budget execution. Finally, based on the results of this study, we urge the need to reconsider the effectiveness of existing SME support policies.

Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.