• Title/Summary/Keyword: Product

Search Result 34,143, Processing Time 0.057 seconds

The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating (유연 종이 식품 포장재의 개질 아크릴 에멀젼 코팅 특성 및 재활용성 평가)

  • Myungho Lee;In Seok Cho;Dong Cheol Lee;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 2023
  • The worldwide effects of COVID-19 have led to a surge in online shopping and contactless services. The consumption pattern has caused the issues such as the environmental pollution together with the increase of plastic waste. Reducing the reliance on the petroleum based plastic use for the package and replacing it with environmentally friendly material are the simple ways in order to solve those problems. Paper is an eco-friendly product with high recyclability as the food packaging materials but has still poor barrier properties. A barrier coating on surface of the paper can be achieved with the proper packaging materials featuring water, gas and grease barrier. Polyethylene (PE) or polypropylene (PP) coatings which are generally laminated or coated to paper are widely used in food packaging applications to protect products from moisture and provide water or grease resistance. However, recycling of packaging containing PE or PP matrix is limited and costly because those films are difficult to degrade in the environment. This study investigated the recyclability of modified acrylic emulsion coating papers compared to PE and PP polymer matrixes as well as their mechanical and gas barrier properties. The results showed that PE or modified acrylic emulsion coated papers had better mechanical properties compared to the uncoated paper as a control. PE or PP coating papers showed strong oil resistance property, achieving a kit rating of 12. Those papers also had a significantly higher percentage of screen reject during the recycling process than modified acrylic coated paper which had a screen rejection rate of 6.25%. In addition an uncoated paper had similar value of a screen rejection rate. It may suggest that modified acrylic emulsion coating paper can be more easily recycled than PE or PP coating papers. The overall results of the study found that modified acrylic emulsion coating paper would be a viable alternative to suggest a possible solution to an environmental problem as well as enhancing the weak mechanical and poor gas barrier properties of the paper against moisture.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 Sentinel-1 SAR 위성영상을 이용한 지표 토양수분량 산정 가능성에 관한 연구)

  • Younghyun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.229-241
    • /
    • 2024
  • With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.

Investigation of Microbial Contamination in the Raw Materials of Meal Kits (간편조리세트 원재료의 미생물 오염도 조사)

  • Hyun-Kyung Lee;Young-Sook Do;Min-Jung Park;Kyoung Suk Lim;Seo-In Oh;Jeong-Hwa Lim;Hyun-Soo Kim;Hyun-Kyung Ham;Yeo-Jung Kim;Myung-Jin Lee;Yong-Bae Park
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.109-117
    • /
    • 2024
  • This study investigated the microbial contamination of agricultural, livestock, and marine ingredients in 55 meal kits distributed across Gyeonggi-do, South Korea. Of the 55 meal kits, 48 contained agricultural ingredients, 43 contained livestock ingredients, and 16 contained marine ingredients. The detection rate of the total aerobic bacteria in the agricultural, livestock, and marine products was 100%. The average numbers of the total aerobic bacteria were 6.57 log colony-forming units (CFU)/g in the agricultural products, 4.60 log CFU/g in the livestock products, and 5.47 log CFU/g in the marine products. The coliform detection rates in the agricultural, livestock, and marine products were 81.25%, 69.77%, and 43.75%, respectively. The average numbers of coliforms were 2.83 log CFU/g in the agricultural products, 1.34 log CFU/g in the livestock products, and 1.12 log CFU/g in the marine products. Escherichia coli was detected in 13 livestock products (30.23%), with levels ranging from 0.70 to 2.36 log CFU/g. Contrastingly, E. coli was detected in only one marine product (6.25%) and was not detected in any agricultural products. The detection rates of fungi in agricultural, livestock, and marine products were 97.92%, 93.02%, and 93.75%, respectively. The average numbers of fungi were 3.82 log CFU/g for the agricultural products, 2.92 log CFU/g for the livestock products, and 2.82 log CFU/g for the marine products. The isolation rates of foodborne pathogens from the agricultural, livestock, and marine products were 35.42%, 37.21%, and 31.25%, respectively. Forty-five foodborne pathogens of seven species, including Bacillus cereus and Salmonella spp., were isolated from the raw materials of the agricultural, livestock, and marine products in 55 meal kits. To prevent foodborne diseases caused by meal kits, it is necessary to focus on washing, heating, and preventing cross-contamination during cooking.

A Study on Investors' Investment Decision Factors in Platform Startup (플랫폼 스타트업에 대한 투자결정요인에 관한 연구)

  • Tae Hwan Heo;Kyung Se Min
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.109-124
    • /
    • 2024
  • The value of platform companies is rapidly increasing, exerting significant influence across industries. Identifying and fostering promising platform companies is crucial for enhancing national competitiveness. Consequently, tailored evaluation standards are necessary for such companies. This study derived investment decision factors specific to platform companies and compared the importance of each factor using Analytic Hierarchy Process (AHP) analysis. Key factors included platform characteristics, finance, entrepreneur (team), market, and product/service attributes. The findings revealed that platform characteristics were deemed the most crucial factor for investors. Specifically, factors such as platform size, ease of value fixation, core participant group, and data value were identified as pertinent for evaluating platform companies. Moreover, analysis distinguished between investors with prior platform investment experience and those without. Significantly, investors with platform investment experience placed greater emphasis on the value of data secured by platform Furthermore, it was observed that investors prioritized future value and growth potential over current value when investing in platform. Notably, founder/team characteristics, typically highly regarded in previous studies, ranked lower in importance in this study, highlighting a shift in focus. The discrepancy between this study's results and prior research on investment decision factors is attributed to the specificity of the questions posed. By focusing on investment decision factors for platform startups rather than generic startup inquiries, investor responses aligned more closely with platform-focused considerations. Given the burgeoning venture investment landscape, there's a growing need for detailed research on startups within specific sectors like IT, travel, and biotech. This approach can replace extensive research covering all startup types to identify investment decision factors suited to the characteristics of each individual industry.

  • PDF

Comparative Analysis of Ginsenoside Content in Processed Red Ginseng Foods Based on Food Type and Formulation (홍삼가공식품의 식품유형별 및 제형별 진세노사이드 함량 비교)

  • Yun-Jeong Yi;Min-Su Chang;In-Sook Lee;Hyun-Jeong Kim;Hyun-Jeong Jang;In-Sook Hwang
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.163-170
    • /
    • 2024
  • Red ginseng is manufactured as a health-functional food and is also present in various food types and in different product forms. However, there is currently no standardized regulation of ginsenoside content in foods containing red ginseng. In the present study, we analyzed the ginsenoside content of 66 red ginseng-containing foods and 35 health-functional foods collected online and directly from the market. The ginsenoside content was assessed using liquid chromatography (LC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The ginsenoside content of the various food types ranged 0.0 (not detected)-71.567 mg per daily intake of foods containing red ginseng. Sugar-preserved foods had the highest ginsenoside content, followed by solid teas, liquid teas, and red ginseng beverages. For health-functional foods, the ginsenoside content ranged 3.4-58.5 mg per daily intake, with levels ranging 83-607% of the indicated amounts. All values met the established standards. Upon comparing red ginseng health-functional foods and red ginseng-containing foods, the average ginsenoside content was determined to be 18.21 and 8.79 mg, respectively, thus being nearly twice as high in health-functional foods. However, there was a minimal difference between the ginsenoside content of red and black ginseng, with values of 11.84 and 12.63 mg, respectively. These findings provide insights on the variations in ginsenoside content of red and black ginseng in various food forms. This information is expected to be valuable for future regulations and consumer choice of products containing red ginseng.

A Study on the Method for Quantifying CO2 Contents in Decarbonated Slag Materials by Differential Thermal Gravimetric Analysis (DTG 분석법을 활용한 슬래그류 비탄산염 재료의 CO2 정량 측정방법 연구)

  • Jae-Won Choi;Byoung-Know You;Yong-Sik Chu;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • Limestone (CaCO3, calcium carbonate), which is used as a raw material in the portland cement and steel industry, emits CO2 through decarbonation by high temperatures in the manufacturing process. To reduce CO2 emissions by the use of raw materials like limestone, it has been proposed to replace limestone with various industrial by-products that contain CaO but less or none of the carbonated minerals, that cause CO2 emissions. Loss of Ignition (LOI), Thermogravimetric analysis (TG), and Infrared Spectroscopy (IR) are used to quantitative the amount of CO2 emission by using these industrial by-products, but CO2 emissions can be either over or underestimated depending on the characteristics of by-product materials. In this study, we estimated CO2 contents by LOI, TG, IR and DTG(Differential Thermogravimetric analysis) of calcite(CaCO3) and samples that contain CO2 in the form of carbonate and whose weight increases by oxidation at high temperatures. The test results showed for CaCO3 samples, all test methods have a sufficient level of reliability. On the other hand, for the CO2 content of the sample whose weight increases at high temperature, LOI and TG did not properly estimate the CO2 content of the sample, and IR tended to overestimate compared to the predicted value, but the estimated result by DTG was close to the predicted valu e. From these resu lts, in the case of samples that contain less than a few percent of CO2 and whose weight increases during the temperature that carbonate minerals decompose, estimating the CO2 content using DTG is a more reasonable way than LOI, TG, and IR.

Study on skin anti-inflammatory activity of fig (Ficus carica L.) fruit extract fractions (무화과(Ficus carica L.) 열매 추출 분획의 피부 항염증 활성 연구)

  • Hee Joon Kwon;Geun soo Lee;Jin Hwa Kim;Soon Woo Kwon;Hyung seo Hwang
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.416-423
    • /
    • 2023
  • Figs has known to have antioxidant, whitening, anti-inflammatory, and antibacterial effects in their leaves, roots, stems, latex, and fruits. In order to develop cosmetic materials based on natural products, we have studied on the skin activity of the ficin in latex as well as the whitening function of the fruit extract with 70% ethanol, and used it as a raw material for released cosmetic product. However, there is little research on the demand for the development of new eutectic solvent extraction methods and its ability to control skin inflammation and psoriasis regulation. Thus, in this study, we evaluated the effectiveness of fig fruit extracts and fractions using eutectic solvent extraction for skin inflammation control and psoriasis. First, fig fruits were extracted under optimal eutectic solvent conditions and fractionated with n-hexane, dichloromethane, ethyl acetate, and butanol. First, the antioxidant activity and inhibition of nitric oxide (NO) production were confirmed in mouse macrophage RAW264.7 cells. In addition, as a result of observing the mRNA expression through RT-PCR, pro-inflammatory cytokines such as TNF-α, IL1α, and IL-1β were suppressed significantly in the hexane, dichloromethane, and ethyl acetate fractions. In addition, it was confirmed in TNF-α stimulated HaCaT keratinocyte model. Finally, chemokine CC motif ligand 20 (CCL20), marker gene of human psoriasis skin disease, was significantly suppressed in the hexane, dichloromethane, and ethyl acetate fractions. These results suggested its anti-inflammatory and skin soothing effect and the possibility of development as an excellent skin soothing natural cosmetic material in the future through future clinical trials.

A Comparative Study on the Ginseng Consumption Culture of College Consumers in Korea and China - Focused on Attitudes Toward Ginseng and Intention to Purchase it - (한국과 중국 소비자의 인삼 소비문화 비교 연구 -대학생 소비자의 인삼에 대한 태도와 구매 의도를 중심으로)

  • Siwuel Kim
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.135-151
    • /
    • 2024
  • In order to compare the ginseng consumption culture of Korean and Chinese college students, their purchase status of ginseng products, attitudes toward ginseng, and satisfaction with ginseng products were examined, and the purchase and recommendation intention of ginseng products was investigated. It targeted 267 Korean college students and 318 Chinese college students who had experience eating ginseng products. As a result of the survey, in the case of Korean college student consumers, interest in ginseng products increased compared to before COVID-19, and the intention to purchase and recommend ginseng products increased. In addition, the higher the satisfaction with ginseng, the higher the frequency of ginseng purchase experience, the higher the social benefit attitude toward ginseng, and the higher the age, the higher the intention to purchase and recommend ginseng products. Chinese college student consumers had higher parental purchases than Korea, higher positive intentions to purchase and recommend social and psychological benefits, and their 20s are already more interested and friendly than Korea. What Korean college students and Chinese college student consumers have in common is that interest in health, safety, and environment has increased since before COVID-19, and interest in ginseng-related products has changed in individual experiences, indicating that individual experiences are important and Chinese college student consumers are influenced by parents. In particular, COVID-19 is an opportunity to recognize the importance of health, which is important to those in their 20s, and is actually related to purchase intention. Focusing on these results, it seems that expansion to preferred products for college student consumers and differentiation of marketing strategies according to family influence and consumption culture should be made, and these new changes due to COVID-19 seem to be a timely opportunity. At a time when interest in health and safety has increased, strategic preparations are needed for the future consumersociety to respond to changesin product diversity and convergence, changes in marketing media to meet consumer consumption values, and changesin consumer family types, such assingle households.

Changes in Phytosterol Content in Cobs and Kernels During Physiological Maturity of Corn Ears (옥수수 이삭 등숙 기간 동안 속대와 종실의 Phytosterol 함량 변화)

  • Jun Young Ha;Young Sam Go;Jae Han Son;Mi-Hyang Kim;Kyeong Min Kang;Tae Wook Jung;Beom Young Son;Hwan Hee Bae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.392-401
    • /
    • 2023
  • Corn (Zea mays L.) is one of the world's most important crops, along with wheat and rice, with a global corn production expected to reach 1,154.5 million tons in 2023. Considering this grain production, The generation of corn cob is expected to reach approximately 207.8 million tons in 2023. However, as an agricultural by-product, corn cobs are often considered waste and remain underutilized. Phytosterols, which are abundant in vegetable oils such as corn oil, provide a number of health benefits, including liver health, cholesterol reduction, and protection against chronic diseases such as diabetes. In this study, we investigated the potential of Kwangpyeongok ears, which are commonly used as grain and silage corn in Korea. We also examined the variation in phytosterol content with the maturity of corn ears to identify the optimal time for utilization. At the beginning of physiological maturity, corn cobs had 113.3 mg/100g DW of total phytosterols, which was highest phytosterol abundance during the growth stage. Corn kernels also had the highest phytosterol content at the beginning of physiological maturity. While previous studies on corn bioactive compounds have mainly focused on the kernels, the results of this study highlight that cobs are an excellent source of these compounds. Furthermore, phytosterol levels were influenced by genetic factors and developmental stages, suggesting the to increase the use of cobs as a source of bioactive compounds.