• Title/Summary/Keyword: Processing element

Search Result 1,750, Processing Time 0.026 seconds

Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio (세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF

Finite Element Analysis for Frictional Contact Problems of Axisymmetric Deforming Bodies (축대칭 변형체의 마찰 접촉문제에 관한 유한요소 해석)

  • 장동환;조승한;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • This paper is concerned with the numerical analysis of frictional contact problems in axisymmetric bodies using the rigid-plastic finite element method. A contact finite element method, based on a penalty function, are derived from variational formulations. The contact boundary condition between two deformable bodies is prescribed by the proposed algorithm. The program which can handle frictional contact problem is developed by using pre-existing rigid-plastic finite element code. Some examples used in this paper illustrate the effectiveness of the proposed formulations and algorithms. Efforts focus on the deformation patterns, contact force, and velocity gradient through the various simulations.

Process Design in Coining by Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Method (강-소성 유한요소법의 3차원 역추적 기법을 적용한 코이닝 공정설계)

  • 최한호;변상규;강범수
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.408-415
    • /
    • 1997
  • The backward tracing scheme of the finite element analysis, which is counted to be unique and useful for process design in metal forming, has been developed and applied successfully in industry to several metal forming processes. Here the backward tracing scheme is implemented for process design of three-dimensional plastic deformation in metal forming, and it is applied to a precision coining process. The contact problem between the die and workpiece has been treated carefully during backward tracing simulation in three-dimensional deformation. The results confirm that the application of the developed program implemented with backward tracing scheme of the rigid plastic finite element leads to a reasonable initial piercing hole configuration. It is concluded that three-dimensional extension of the scheme appears to be successful for industrial applications.

  • PDF

A Parallel Finite Element Procedure for Contact-Impact Problems (충돌해석을 위한 병렬유한요소 알고리즘)

  • Har, Jason
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1286-1290
    • /
    • 2003
  • This paper presents a newly implemented parallel finite element procedure for contact-impact problems. Three sub-algorithms are includes in the proposed parallel contact-impact procedure, such as a parallel Belytschko-Lin-Tsay (BLT) shell element generation, a parallel explicit time integration scheme, and a parallel contact search algorithm based on the master slave slide-line algorithm. The underlying focus of the algorithms is on its effectiveness and efficiency for inclusion in future finite element systems on parallel computers. Throughout this research, a prototype code, named GT-PARADYN, is developed on the IBM SP2, a distributed-memory computer. Some numerical examples are provided to demonstrate the timing results of the procedure, discussing the accuracy and efficiency of the code.

  • PDF

Development of FE Analysis Scheme for Milli-Part Forming Using Grain and Grain Boundary Element (입자요소를 이용한 미세 박판 부품의 유한요소 해석 기법 개발)

  • 구태완;김동진;강범수
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.439-446
    • /
    • 2002
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. When scaling down a metal forming process, the dimensions of the workpiece decrease but the microstructure of the workpiece remains the similar. Since the dimensions of the workpiece are very small, the microstructure especially the grain size will play an important role in micro forming, which is called size effects. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for visco-elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

Some Remarks on the Experiment and Finite Element Analysis to Evaluate to Forming Limit of Sheet Metals (금속판재의 성형성 평가를 위한 실험 및 유한요소해석에 관한 고찰)

  • 곽인구;신용승;김형종;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.379-388
    • /
    • 2000
  • This study aims to examine the influence of experimental and numerical factors on the results of the test and finite element simulation to evaluate the formability of sheet metals. The stretch-forming test with a hemispherical punch is carried out to obtain the limiting dome height (LDH) and forming limit diagram (FLD) for several kinds of aluminium and steel sheet. The results of the LDH and FLD tests are analysed to find any correlation with the uniaxial tensile properties. It proves that the size of the prescribed grid has great influence on the measured value of strain. The finite element analysis of the punch stretching process is also carried out and the result is compared with the experimental data. The influence of the numerical parameters such as friction coefficient, element size and anisotropy model on the simulation results tms out to be very considerable.

  • PDF

3-Dimensional Finite Element Analysis of Hemming for Automotive Outer Panels by Part Model Assembling Method (부분모델 합성법을 이용한 자동차 외판의 헤밍 공정에 대한 3차원 유한요소해석)

  • 김헌영;임희택;김형종;이우홍;박춘달
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2004
  • Hemming is the last farming process in stamping and determines external quality of automotive outer panels. Few numerical approaches using 3-dimensional finite element model have been applied to a hemming process due to small element size which is needed to express the bending behavior of the sheet around small die comer and comparatively big model size of automotive opening parts, such as side door, back door and trunk lid etc In this study, part model assembling method is suggested and applied to the 3-dimensional finite element simulation of flanging and hemming process far an automotive front hood.

Analysis of Rectangular Cup Drawing Processes with Large Aspect Ratio Using Multi-Stage Finite Element Inverse Analysis (다단계 유한요소 역해석을 이용한 세장비가 큰 직사작컵 성형 공정의 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.389-395
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes with large aspect ratio, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem. as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

An Elasto-Plastic Finite Element Analysis on Deep Drawing of Clad Sheet Metal (클래드 강판재에 의한 축대칭 디프드로잉의 탄소성 유한요소해석)

  • 류호연;김영은;김종호;정완진
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.411-417
    • /
    • 2001
  • A Comparative study on deep drawing of clad sheet is carried out to investigate the forming characteristics and the effectiveness of modified finite element analysis. An elasto-plastic finite element analysis Is developed to analyze the forming of clad sheet using explicit scheme and layered shell. Axisymmetric deep drawing of stainless clad metal sheet is performed and thickness distribution is obtained. The corresponding finite element analysis shows good agreement with the results. Some disagreement can be explained by the assumption of shell element and the complexity of deformation of clad sheet.

  • PDF

An Introduction of Bifurcation Algorithm into the Elastic-Plastic Finite Element Analysis (분기좌굴이론의 탄소성 유한요소법에의 적용)

  • 김종봉;양동열;윤정환
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.128-139
    • /
    • 2000
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of wrinkles are influenced by many factors such as stress state, mechanical properties of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show a wide variation for small deviations of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth. All the above mentioned factors are conveniently considered by the finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing a column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF