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Abstract 

This paper presents a newly implemented parallel finite element procedure for contact-impact problems. 
Three sub-algorithms are includes in the proposed parallel contact-impact procedure, such as a parallel 
Belytschko-Lin-Tsay (BLT) shell element generation, a parallel explicit time integration scheme, and a 
parallel contact search algorithm based on the master slave slide-line algorithm. The underlying focus of the 
algorithms is on its effectiveness and efficiency for inclusion in future finite element systems on parallel 
computers. Throughout this research, a prototype code, named GT-PARADYN, is developed on the IBM SP2, 
a distributed-memory computer. Some numerical examples are provided to demonstrate the timing results of 
the procedure, discussing the accuracy and efficiency of the code. 

1. Introduction 

Parallel processing using a multiple instruction 
multiple data (MIMD) parallel computer is a promising 
approach to the solution of engineering problems, which 
usually require considerable computer time on past 
pipelined vector supercomputers in simulating their 
structural behaviors. This research presents a parallel 
processing procedure to the solution of contact-impact 
response of shell structures, based on displacement-finite 
element methods, resulting in considerable reduction of 
computation time. The foundation of the procedure is 
placed on a perfect domain decomposition strategy and 
an inter-processor communication minimization strategy. 
The emphasis of the algorithm is placed on an element-
wise block domain decomposition strategy for the 
parallel BLT shell element generation, a node-wise cyclic 
domain decomposition strategy for calculating contact 

force and a parallel explicit time integration scheme. The 
procedure proposed in this paper is implemented on the 
IBM-SP2 of The Maui High Performance Computing 
Center by using MPI. Based on the previous work [1] by 
the author, this research has been carried out as the 
extension of that [1] to the contact-impact problems. To 
show the accuracy and efficiency of the algorithms, pipe 
whip examples are demonstrated by GT-PARADYN. 

2. Belytschko Shell Element Formulation 

The BLT shell element [2] has numerous features, 
including a bilinear four-node quadrilateral shell element 
with one-point quadrature classified as U 1 element [3] 
by Hughes, a co-rotational velocity-strain formulation, 
and an efficient hourglass control eliminating zero-
energy modes. The hourglass mode that can destroy the 
solution due to the inherent singularity of the element 
might be treated by the algorithm presented by Flanagan 
and Belytschko [4]. The mass matrix might be also 
transformed to the lumped mass matrix. This paper took 
the method proposed by Key [5] and Hughes [6]. The 
Jaumann stress rate is employed in constitutive 
relationships to resolve the need for an objective rate of 
Cauchy stress. Since the material experiences combined 
kinematic and isotropic hardening beyond the yield 
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Figure 1 Procedure for parallel contact-impact problems 

 
surface, the computational plasticity procedure related to 
the radial return method should be applied in this work 
 

3. Parallel Contact-Impact Algorithm 

As a contact algorithm, the so-called master slave 
slide-line algorithm [7] applied in GT-PARADYN 
includes two issues, e.g., contact search and contact force 
calculation. The goal of the contact search is the location 
of the contact point of each hitting node on the master 
surface (target surface). The search takes place in three 
stages. As sometimes termed global search, the first stage 
is to search for a target node (master node) which is 
closest to a hitting node - in this paper, a bucket sort 
algorithm can be applied [8]. Benson and et al. [8] 
exploited an efficient search algorithm, namely a bucket 
sort algorithm which had been used in the computer 
science community. The second and third stages are 
referred to as local search. The second stage is to search 
for a target segment (master segment) which contains the 
target node and is closest to the hitting node. Finally the 
third is to calculate the closest point of the target 
segment to the hitting node in terms of the isoparametric 
coordinates of the target segment. According to Hallquist 
[7], the contact point might be located as the point on the 
master element that contains the master node closest to 
the slave node. The contact normal force vector may be 
calculated by the stiffness factor, based on the penalty 
method [7]. An equal and opposite force over the master 
element may be determined. In what follows, we 
describe the strategy of the parallel contact-impact 
algorithm the schematic diagram of which is seen in 

Figure 1. 

This work employs the maladroit method as a domain 
decomposition method. The whole domain can be 
divided into several sub-domains based on the element 
numbers which can be sorted in ascending order. A 
processor whose rank is zero is, hereafter, called 
“primary processor”. Other processors are referred to as 
ordinary processors. The primary processor is 
responsible to acquire information on input data   
containing the total number of elements and nodes, time 
incremental size, degrees of freedom per node, boundary 
conditions, integration points, material property, section 
property, given load data, element connectivity, 
coordinates of nodes, and so on. And then, the primary 

Table 1 Three-dimensional bucket sorting algorithm 

ntbxy = ntbx*ntby; 
do i=i,ntbz;  

     do j=i,nbkz(i);  
icell=(i-1)*ntbxy+(nby(ibz(j,i))-1)*ntbx+nbx(ibz(j,i));
ic(icell)=ic(icell)+i 
ibxyz(ic(icell),icell)=ibz(j,i); 

    enddo ;  
ncell(icell)=ic(icell) ;  
enddo;  
do i=i,nnode;  
nbxyz(i)=(nbz(i)-1)*ntbxy+(nby(i)-1)*ntbx+nbx(i) ; 
enddo 
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processor is to broadcast input data to ordinary 
processors. The nodal information should be made on 
element level, since GT-PARADYN conducts the BLT 
shell element generation on element level in parallel [1]. 
The algorithm for the domain decomposition was 
illustrated in Har [1].  All processors including the 
primary processor are take part in the three-dimensional 
sorting scheme at the same time. The three-dimensional 
bucket sort scheme is so simple and does not take long 
time. Thus after conducting the sorting scheme 
respectively and independently, every processor retains 
the same information, for example, the bucket number of 
a node and the number of nodes inside a bucket. In Table 
1, ‘ntbx’, ‘ntby’, and ‘ntbz’ represent the total numbers of 
the buckets in the ‘x’, ‘y’, and ‘z’-direction respectively. 
‘nbx(i)’, ‘nby(i)’, and ‘nbz(i)’ represent the bucket 
number of the node ‘i’ in the ‘x’, ‘y’, and ‘z’-direction 
respectively, which means one-dimensional bucket 
sorting. ‘nbkx(i)’, ‘nbky(i)’, and ‘nbkz(i)’ represent the 
numbers of nodes inside the ‘i’-th bucket in the ‘x’, ‘y’, 
and ‘z’-direction respectively. ‘ibx(j,i)’, ‘iby(j,i)’, and 
‘ibz(j,i)’ represent the ‘j’-th node number of the ‘i’-th 
bucket in the ‘x’, ‘y’, and ‘z’-direction respectively. 
‘icell’ represents the bucket number in the three-
dimensional space. ‘ibxyz(j,i)’ represents the ‘j’-th node 
inside the ‘i’-th bucket in the three dimensional space. 
Thus ‘ncell(i)’  represents the number of nodes in the 
‘i’-th bucket in the three-dimensional space. Finally, 
‘nbxyz(i)’ indicates the bucket number of the node ‘i’ in 
the three-dimensional space as seen Table 1. 

4. Domain Decomposition on Node Level for 

Parallel Contact Point Searching 

For contact problems, load balanced decomposition 
can not be achieved by any static domain decomposition 
techniques unless contacting area is found in advance, 
because of the fact that some part of the body is in 
contact, but the other part is not and contact area varies 
continuously. Thus all processors are responsible to 
search for potential hitting nodes and master elements 
that are in contact. In Table 2, let ‘myid’ denote the rank 
identification number of each processor, and let ‘nsa’ 
denote the first node of the slave body, and ‘nsb’ indicate 
the last node of slave body. In order to achieve a 
symmetric contact implementation, the slave and master 
body must be swapped every time increment. Thus in the 
next time increment, ‘nsa’ should be replaced by ‘nma’ 
representing the first node of the master body, and ‘nsb’ 
should be replaced by ‘nmb’ representing the last node of 
the master body. For all processors to search for potential 
hitting nodes and elements, the node-wise cyclic domain 
decomposition is applied so that load balancing between 
processors can be obtained. A processor with a slave 
node is about to determine a master node having a 
minimum distance between the slave node and the 
master node on the ground that two nodes should share 

the same bucket. Then each processor stores information 
on how many slave nodes are concerned, and what slave 
nodes are potentially about to contact, and what master 
segments corresponding to hitting nodes are potentially 
in contact into separate variables with respect to assigned 
slave nodes. Ordinary processors are next to send their 
information to the primary processor. Each ordinary 
processor has different number of nodes and master 
elements which are potentially in contact. The primary 
processor plays a role of summing these data and 
distributing work load. After the primary processor 
determines information on how many slave nodes and 
what slave nodes and master elements are potentially in 
contact over a whole domain, and then it is responsible to 
make a node-wise block domain decomposition and 
distribute work balanced load to ordinary processors. 

Table 2 Algorithm of searching for potential contacting 
nodes and elements 

ks=0; 
kr=0; 
do i=myid+nsa,nsb,np ;  
node-wise domain decomposition 
icell=nbxyz(i); 
do j=1, ncell(icell); 
if (ibxyz(j,icell).gt.nsb) then 
dis(j)=sqrt((x(1,i)-x(1,ibxyz(j,icell)))**2+(x(2,I)- 
x(2,ibxyz(j,icell)))**2+(x(3,i)- 
x(3,ibxyz(j,icell)))**2) 
kr=kr+1 ; 
else ; 
dis(j)=0.0 ; 
endif ; 
enddo; 
if (kr.eq.0) goto 100 ;  
dmin=dis(1);  
do j=1,ncell(icell) 
if (dmin.ge.dis(j).and.dis(j).ne.0.0) then;  
dmin=dis(j) ;  

mel=j ; endif;  
enddo; 
knode=ibxyz(mel,icell) ; 
ks=ks+1 ;  
nosl(ks)=i ;  
noma(ks)=knode ;  
nomp(ks)=mel 

100 continue; 
 enddo  ! i - loop 
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5. Parallel Contact-Point Locating Scheme 

The primary processor is ready to make node-wise 
block domain decomposition for getting ideal load 
balance. As seen in Table 3, the primary processor 
distributes work load to each ordinary processor. ‘kont’ 
represents the total number of potential hitting nodes in 
the slave body. This number can be regarded to as a total 
load which is about to be divided into the number of 
available processors including primary processor. Then 
‘kave’ is the average resulting from dividing ‘kont’ by 
‘np’. 

6. Pipe Whip Problems 

Pipe whip problems, which have been investigated by 
a number of researchers, are considered as good 
examples to test a contact-impact algorithm. The Nuclear 
Power Plant design regulations require pipes to be 
designed against pipe whip. The high-pressure fluid 
inside the pipe can cause a pipe to whip and impact 
another pipe. Several examples are presented here. The 
first one is taken to evaluate the accuracy of engineering 
results using GT-PARADYN, and the second one to 
measure the parallel performance of the code.  

The two cylinders we have share the same material 
properties, along with the same length, same thickness 
and same radius. The Young’s modulus is 200 GPa, and 
Poisson’s ratio 0.28, the mass density 7,860 kg/cubic 
meter, and the yielding modulus is 250 MPa, the 
hardening modulus is zero. The total length of a cylinder 
is 2 m, thickness 3 mm, radius 8 cm, the initial gap 
between pipes 0.01cm. The axes of two cylinders are 
perpendicular to each other. The finite element model of 
each pipe is composed of 512 four node quadrilateral 
shell elements (16 elements around the circumference 
and 32 elements along the axis). The time step size is 
taken as 

610−
 second and the response time is taken up 

to 2.5 milliseconds, which means time integration loops 
are carried out 2,500 times. The displacement of each 
pipe was investigated at 6 points of the pipe. At first, we 
wanted to see the accuracy of the code rather than 
parallel performance. The upper 

Table 3 Contact point locating algorithm 

do i=1, kave  ! i = potential hitting node number

      All Processors Conduct Local Search 

      Contact Point Determination 

      Check out If Penetration Occurs 

      Contcat Force Calculation 

   enddo 

cylinder is flying with a velocity, -2 m/sec in the ‘z’-
direction, while the lower pipe is fixed at both ends. The 
obtained results imply that the two pipes begin to 
rebound at about 2 milliseconds. For 2.5 milliseconds of 
the response analysis on one SP2 wide node, GT-
PARADYN required about 800 seconds. Malone [10], 
for the same example, obtained the response up to 1 
millisecond. Malone's result showed the displacement of 
the contact point on the lower cylinder was 0.8 mm, 
while that of the upper cylinder 1.0 mm. His results 
implied that 0.2 mm gap between the upper and lower 
cylinders remained constant up to 1.0 millisecond. By 
the way, GT-PARADYN showed that the displacement of 
the contact point on the lower cylinder was 0.86 mm, 
which was almost in agreement with that by Malone. 
Malone predicted the displacement of the center point of 
the upper cylinder at 1 millisecond was about 1.5 mm, 
while GT-PARADYN showed that it was 2.54 mm. 
Figure 2 shows the deformed configuration of both pipes 
which are contacting at 40 milliseconds each other with 
an initial speed, 20 m/sec, rather than 2 m/sec in order to 
see a visual exaggeration behavior of the shell structures. 

 

Figure 2 Deformed configuration at 40 milliseconds 

And Figure 3 shows the deformed configuration at 60 
milliseconds for both pipes contacting without fixed 
boundary conditions. 

 
Figure 3 Deformed configuration at 60 milliseconds 
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Figure 4 Speed-up diagram for pipe whip problem 

Next model explores a scalable parallel performance 
of the code on the IBM SP2. The number of elements has 
increased and the pipe sizes are much bigger than those 
of the previous models. Each pipe consists of 3,200 four 
node quadrilateral shell elements (40 elements around 
the circumference and 80 elements along the axis). Both 
pipes are flying with the same speed, 20 m/sec, at right 
angles with each other, and toward each other. The total 
model has 6,400 elements and 6,480 finite element nodes. 
The time step size is taken as 610−  millisecond and the 
response duration time is taken up to 1.7 milliseconds, 
which means time integration loops are carried out 1,700 
times. Figure 3 shows the speed-up diagram obtained in 
this work. Up to 10 processors was applied to see the 
parallel performance for pipe whip problems. While 
11,008 seconds on one processor was consumed as CPU 
time, 2,256 seconds on 10 processors were needed. The 
speedup came out with 4.88, and the parallel efficiency 
became 48.8 %. 

7. Conclusion 

The contact-impact algorithm that this research 
exploits consists of three parts, such as the three 
dimensional bucket sort algorithm, the contact point 
searching algorithm which includes the contact point 
location algorithm, and the contact force calculation 
algorithm. The three dimensional bucket sort algorithm 
has severe data dependency. The bucket sort algorithm 
occupies 20 % of the total CPU time of contact-impact 
treatment when only one processor is employed. 

After all, the present parallel contact algorithm aims 
to reduce 80 % of the total CPU time of contact-impact 
treatment as the number of processors increases. The 
contact search algorithm contains lots of branches so that 
many synchronization points must be inserted. However 
as long as the number of nodes, which are potentially in 
contact, increases, the CPU time might be reduced, 
because these potential nodes must be checked for the 
penetration possibility. We recommend that more 
efficient contact algorithms be expected to appear in the 

light of the results of this work. 
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