• 제목/요약/키워드: Processing Method

검색결과 18,099건 처리시간 0.042초

CodeBERT 모델의 전이 학습 기반 코드 공통 취약점 탐색 (Detecting Common Weakness Enumeration(CWE) Based on the Transfer Learning of CodeBERT Model)

  • 박찬솔;문소영;김영철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권10호
    • /
    • pp.431-436
    • /
    • 2023
  • 소프트웨어 공학 영역에 인공지능의 접목은 큰 화두 중 하나이다. 전 세계적으로 1) 인공지능을 통한 소프트웨어 공학, 2) 소프트웨어 공학을 통한 인공지능 두 가지 방향으로 활발히 연구되고 있다. 그 중 소프트웨어 공학에 인공지능을 접목하여 나쁜 코드 영역을 식별하고 해당 부분을 리팩토링하는 연구가 진행되고 있다. 해당 연구에서 인공지능이 나쁜 코드 요소의 패턴을 잘 학습하기 위해서는 학습하려는 나쁜 코드 요소가 라벨링 된 데이터셋이 필요하다. 문제는 데이터셋이 부족할뿐더러, 자체적으로 수집한 데이터셋의 정확도는 신뢰할 수 없다. 이를 해결하기 위해 코드 데이터 수집 시 전체 코드가 아닌 높은 복잡도를 가진 코드 모듈 영역을 대상으로만 나쁜 코드 데이터를 수집한다. 이후 수집한 데이터셋을 CodeBERT 모델의 전이 학습하여 코드 공통 취약점을 탐색하는 방법을 제안한다. 해당 데이터셋을 통해 CodeBERT 모델이 코드의 공통 취약점 패턴을 더 잘 학습할 수 있다. 이를 통해 전통적인 방법보다 인공지능 모델을 이용해 코드를 분석하고 공통 취약점 패턴을 더 정확하게 식별할 수 있을 것으로 기대한다.

LSTM을 이용한 협동 로봇 동작별 전류 및 진동 데이터 잔차 패턴 기반 기어 결함진단 (Gear Fault Diagnosis Based on Residual Patterns of Current and Vibration Data by Collaborative Robot's Motions Using LSTM)

  • 백지훈;유동연;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권10호
    • /
    • pp.445-454
    • /
    • 2023
  • 최근에는 협동 로봇의 데이터를 활용한 다양한 결함진단 연구가 수행되고 있다. 협동 로봇의 결함진단을 수행하는 기존 연구들은 기존 연구의 학습 데이터는 미리 정의된 기기의 동작을 가정하고 수집한 정적 데이터를 사용한다. 따라서 결함진단 모델은 학습한 데이터 패턴에 대한 의존성이 높아지는 한계가 있다. 또한 단일 모터를 사용한 실험으로 다관절이 동작하는 협동 로봇의 특성을 반영한 진단이 이루어지지 못했다는 한계가 있다. 본 논문에서는 앞서 언급한 두 가지 한계점을 해결할 수 있는 LSTM 진단 모델을 제안한다. 제안하는 방법은 단일 축 및 다중 축 작업 환경에서의 진동 및 전류 데이터의 상관분석을 사용하여 정상 대표 패턴을 선정하고, 정상 대표 패턴과의 차이를 통해 잔차 패턴을 생성한다. 생성된 잔차 패턴을 입력으로 축별 기어 마모 진단을 수행할 수 있는 LSTM 모델을 생성한다. 해당 결함진단 모델은 동작별 대표 패턴을 통해 모델의 학습 데이터 패턴에 대한 의존성을 낮출 수 있을 뿐 아니라 다중 축 동작 수행 시 발생하는 결함을 진단할 수 있다. 마지막으로, 내부 및 외부 데이터의 특성을 모두 반영하여 결함진단 성능을 개선한 결과 98.57%의 높은 진단 성능을 보였다.

건설 리스크 도출을 위한 SVM 기반의 건설프로젝트 문서 분류 모델 개발 (Development of SVM-based Construction Project Document Classification Model to Derive Construction Risk)

  • 강동욱;조민건;차기춘;박승희
    • 대한토목학회논문집
    • /
    • 제43권6호
    • /
    • pp.841-849
    • /
    • 2023
  • 건설프로젝트는 공기 지연, 건설 재해 등 다양한 요인으로 인한 리스크가 존재한다. 이러한 건설 리스크를 기반으로 건설프로젝트의 공사 기간의 산정 방법은 주로 감독자 경험에 의존한 주관적 판단으로 이루어지고 있다. 또한, 공기 지연과 건설 재해로 지연된 건설프로젝트 일정을 맞추기 위한 무리한 단축 시공은 부실시공 등의 부정적인 결과를 초래하며, 지연된 일정으로 인한 사회 기반 시설물 부재로 경제적 손실이 발생한다. 이러한 건설프로젝트의 리스크 해결을 위한 데이터 기반의 과학적 접근과 통계적 분석이 필요한 실정이다. 실제 건설프로젝트에서 수집되는 데이터는 비정형 텍스트 형태로 저장되어 있어 데이터를 기반으로 한 리스크를 적용하기 위해서는 데이터 전처리에 많은 인력과 비용을 수반하기 때문에 텍스트 마이닝을 활용한 데이터 분류 모델을 통한 기초자료를 요구한다. 따라서, 본 연구에서는 건설프로젝트 문서를 수집하여 텍스트 마이닝을 활용하여 SVM(Support Vector Machine) 기반의 데이터 분류 모델을 통해 리스크 관리를 위한 문서 기초자료 생성 분류 모델을 개발하였다. 향후 연구 결과를 통해 정량적인 분석을 통해서 건설프로젝트 공정관리 등에 있어 효율적이고 객관적인 기초자료로 활용되어 리스크 관리가 가능해질 것으로 기대된다.

32-bit RISC-V상에서의 PIPO 경량 블록암호 최적화 구현 (Optimized Implementation of PIPO Lightweight Block Cipher on 32-bit RISC-V Processor)

  • 엄시우;장경배;송경주;이민우;서화정
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권6호
    • /
    • pp.167-174
    • /
    • 2022
  • PIPO 경량 블록암호는 ICISC'20에서 발표된 암호이다. 본 논문에서는 32-bit RISC-V 프로세서 상에서 PIPO 경량 블록암호 ECB, CBC, CTR 운용 모드의 단일 블록 최적화 구현과 병렬 최적화 구현을 진행한다. 단일 블록 구현에서는 32-bit 레지스터 상에서 효율적인 8-bit 단위의 Rlayer 함수 구현을 제안한다. 병렬 구현에서는 병렬 구현을 위한 레지스터 내부 정렬을 진행하며, 서로 다른 4개의 블록이 하나의 레지스터 상에서 Rlayer 함수 연산을 진행하기 위한 방법에 대해 설명한다. 또한 CBC 운용모드의 병렬 구현에서는 암호화 과정에 병렬 구현 기법 적용이 어렵기 때문에 복호화 과정에서의 병렬 구현 기법 적용을 제안하며, CTR 운용모드의 병렬 구현에서는 확장된 초기화 벡터를 사용하여 레지스터 내부 정렬 생략 기법을 제안한다. 본 논문에서는 병렬 구현 기법이 여러 블록암호 운용모드에 적용 가능함을 보여준다. 결과적으로 ECB 운용모드에서 키 스케줄 과정을 포함하고 있는 기존 연구 구현의 성능 대비 단일 블록 구현에서는 1.7배, 병렬 구현에서는 1.89배의 성능 향상을 확인하였다.

동계스포츠 참여자의 성취목표성향이 재미요인 및 참여만족에 미치는 영향 (The Effect of Achievement Goal Orientation and Enjoyment of Winter Sports Participants on Participation Satisfaction)

  • 조석연;김대훈
    • 한국응용과학기술학회지
    • /
    • 제40권5호
    • /
    • pp.1092-1103
    • /
    • 2023
  • 본 연구는 국내 동계스포츠 참여자의 성취목표성향이 재미요인 및 참여만족에 어떠한 영향을 미치는지 규명하는 연구로서 총 326개의 설문지가 본 연구에 사용되었다. 자료처리 방법으로는 SPSS PC/Program(Version 27.0)을 사용하였으며, 통계적 방법으로는 빈도분석, 신뢰도 분석, 탐색적 요인분석, 상관관계분석, 다중회귀분석을 사용하였다. 성취목표성향, 재미요인, 참여만족의 통계적 영향을 검증한 결과는 다음과 같다. 첫째, 성취목표성향이 재미요인에 미치는 영향을 검증한 결과 성취목표성향의 하위요인 자아목표성향, 과제목표성향이 재미요인 하위요인 운동능력, 운동효용, 친목도모, 자기만족 요인에 유의한 영향을 미치는 것으로 나타났다. 둘째, 성취목표성향의 하위요인 자아목표성향, 과제목표성향이 참여만족의 하위요인 시설, 비용, 강습, 대인관계 및 건강 요인에 유의한 영향을 미치는 것으로 나타났다. 셋째, 재미요인의 하위요인 운동능력, 운동효용, 친목도모, 자기만족이 참여만족 하위요인 시설, 비용, 강습, 대인관계 및 건강 요인에 유의한 영향을 미치는 것으로 나타났다.

효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석 (Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System)

  • 김수인;전영진;이상범;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.519-524
    • /
    • 2023
  • 해싱 기반 이미지 검색에서는 조작된 이미지의 해시코드가 원본 이미지와 달라 동일한 이미지 검색이 어렵다. 본 논문은 이미지의 질감, 모양, 색상 등 특징 정보로부터 지각적 해시코드를 생성하는 자기 감독 기반 딥해싱 모델을 제안하고 평가한다. 비교 모델은 오토인코더 기반 변분 추론 모델들이며, 인코더는 완전 연결 계층, 합성곱 신경망과 트랜스포머 모듈 등으로 설계된다. 제안된 모델은 기하학적 패턴을 추출하고 이미지 내 위치 관계를 활용하는 SimAM 모듈을 포함하는 변형 추론 모델이다. SimAM은 뉴런과 주변 뉴런의 활성화 값을 이용한 에너지 함수를 통해 객체 또는 로컬 영역이 강조된 잠재 벡터를 학습할 수 있다. 제안 방법은 표현 학습 모델로 고차원 입력 이미지의 저차원 잠재 벡터를 생성할 수 있으며, 잠재 벡터는 구분 가능한 해시코드로 이진화 된다. CIFAR-10, ImageNet, NUS-WIDE 등 공개 데이터셋의 실험 결과로부터 제안 모델은 비교 모델보다 우수하며, 지도학습 기반 딥해싱 모델과 동등한 성능이 분석되었다.

언어 모델 기반 음성 특징 추출을 활용한 생성 음성 탐지 (Voice Synthesis Detection Using Language Model-Based Speech Feature Extraction)

  • 김승민;박소희;최대선
    • 정보보호학회논문지
    • /
    • 제34권3호
    • /
    • pp.439-449
    • /
    • 2024
  • 최근 음성 생성 기술의 급격한 발전으로, 텍스트만으로도 자연스러운 음성 합성이 가능해졌다. 이러한 발전은 타인의 음성을 생성하여 범죄에 이용하는 보이스피싱과 같은 악용 사례를 증가시키는 결과를 낳고 있다. 음성 생성 여부를 탐지하는 모델은 많이 개발되고 있으며, 일반적으로 음성의 특징을 추출하고 이러한 특징을 기반으로 음성 생성 여부를 탐지한다. 본 논문은 생성 음성으로 인한 악용 사례에 대응하기 위해 새로운 음성 특징 추출 모델을 제안한다. 오디오를 입력으로 받는 딥러닝 기반 오디오 코덱 모델과 사전 학습된 자연어 처리 모델인 BERT를 사용하여 새로운 음성 특징 추출 모델을 제안하였다. 본 논문이 제안한 음성 특징 추출 모델이 음성 탐지에 적합한지 확인하기 위해 추출된 특징을 활용하여 4가지 생성 음성 탐지 모델을 만들어 성능평가를 진행하였다. 성능 비교를 위해 기존 논문에서 제안한 Deepfeature 기반의 음성 탐지 모델 3개와 그 외 모델과 정확도 및 EER을 비교하였다. 제안한 모델은 88.08%로 기존 모델보다 높은 정확도와 11.79%의 낮은 EER을 보였다. 이를 통해 본 논문에서 제안한 음성 특징 추출 방법이 생성 음성과 실제 음성을 판별하는 효과적인 도구로 사용될 수 있음을 확인하였다.

Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise

  • Joo Hee Kim;Hyun Jung Yoon;Eunju Lee;Injoong Kim;Yoon Ki Cha;So Hyeon Bak
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.131-138
    • /
    • 2021
  • Objective: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). Materials and Methods: This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. Results: Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). Conclusion: DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.

로지스틱 회귀분석 기반 노인 보행자 교통사고 요인 분석 (Analysis-based Pedestrian Traffic Incident Analysis Based on Logistic Regression)

  • 김시원;길정원;권재경;황재성;이철기
    • 한국ITS학회 논문지
    • /
    • 제23권2호
    • /
    • pp.15-31
    • /
    • 2024
  • 초고령화 사회로 진입하고 있는 대한민국 노인 인구의 상황을 반영하여 노인 교통사고의 특성을 파악하고, 이항형 변수를 활용하여 노인 보행자 교통사고에서 발생한 중상 이상의 교통사고와 경상 이하의 교통사고를 구분하여 독립변수와 종속변수의 관계를 분석하였다. 도로교통공단 교통사고분석시스템(TAAS)에서 지난 10년간('3년~'22년)의 노인 보행자 교통사고 자료를 구득하여 데이터 수집, 가공, 변수 선정을 수행하였으며, 기초 통계 및 사고 요인별 분석을 실시하였다. 로지스틱 회귀분석 모형을 적용하여 총 15개의 영향 변수를 도출하였고 노인 보행자 중상이상의 교통사고 발생 확률에 가장 큰 영향을 미치는 영향 변수들을 도출하였다. 이후, 로지스틱 모형의 정확도 분석을 위해 통계적 검정을 수행하였으며, 노인 보행자 교통사고에 영향을 미치는 변수를 도출 및 예측모형 구축에 따른 교통사고 발생확률 예측 방법을 제시하였다.

뮤직비디오 브라우징을 위한 중요 구간 검출 알고리즘 (Salient Region Detection Algorithm for Music Video Browsing)

  • 김형국;신동
    • 한국음향학회지
    • /
    • 제28권2호
    • /
    • pp.112-118
    • /
    • 2009
  • 본 논문은 모바일 단말기, Digital Video Recorder (DVR) 등에 적용할 수 있는 뮤직비디오 브라우징 시스템을 위한 실시간 중요 구간 검출 알고리즘을 제안한다. 입력된 뮤직비디오는 음악 신호와 영상 신호로 분리되어 음악 신호에서는 에너지기반의 음악 특징값 최고점기반의 구조분석을 통해 음악의 후렴 구간을 포함하는 음악 하이라이트 구간을 검출하고, SVM AdaBoost 학습방식에서 생성된 모델을 이용해 음악신호를 분위기별로 자동 분류한다. 음악신호로부터 검출된 음악 하이라이트 구간과 영상신호로부터 검출된 가수, 주인공의 얼굴이 나오는 영상장면을 결합하여 최종적으로 중요구간이 결정된다. 제안된 방식을 통해 사용자는 모바일 단말기나 DVR에 저장되어 있는 다양한 뮤직비디오들을 분위기별로 선택한 후에 뮤직비디오의 30초 내외의 중요구간을 빠르게 브라우징하여 자신이 원하는 뮤직비디오를 선택할 수 있게 된다. 제안된 알고리즘의 성능을 측정하기 위해 200개의 뮤직비디오를 정해진 수동 뮤직비디오 구간과 비교하여 MOS 테스트를 실행한 결과 제안된 방식에서 검출된 중요 구간이 수동으로 정해진 구간보다 사용자 만족도 측면에서 우수한 결과를 나타내었다.