• Title/Summary/Keyword: Processed ginseng

Search Result 160, Processing Time 0.031 seconds

Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS

  • Park, Hee-Won;In, Gyo;Kim, Jeong-Han;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field.

Justification of eco-friendly organic ginseng products and the product R&D

  • Shin, W.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.35-38
    • /
    • 2011
  • In order to cope with change of Korean and global consumption trend, it is forecast that GAP cultivated ginseng & its processed products, Organic cultivated ginseng & its processed products, Sanyangsam & its processed products as well as existing white ginseng (products), red ginseng (products), Taekuksam (products), black ginseng (products) will enter into market and customer demands will create new consumption. Eventually, it is considered that the time has come for considering and carrying out together for raw material cultivation and production, research and development of processed products and export and distribution of domestic and overseas market.

A New Processed Ginseng with Fortified Activity

  • Park, Jeong-Hill;Kim, Jong-Moon;Han, Sang-Beom;Kim, Na-Young;Surh, Young-Joon;Lee, Seung-Ki;Kim, Nak-Doo;Park, Man-Ki
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.146-159
    • /
    • 1998
  • A new processed ginseng with fortified activity is developed. The process comprise with the heat treatment of fresh or white ginseng at higher temperature and pressure than those used for the preparation of red ginseng. This new processed ginseng showed 7 times higher antioxidant activity and more than 30 times stronger vasodilating activity than those shown in raw ginseng. Other activities found in the new processed ginseng include cancer chemoprevention, antinephrotoxic, and antineurotoxic activities. Less polar ginsenosides isolated from processed ginseng exhibited anti-platelet aggregation activity and anti-cancer activity. Many ginsenosides were isolated from this new processed ginseng, namely 20(S)-$Rg_3$,20(R)-$Rg_3$, $Rg_5$, $Rg_6$, $F_4$, $Rh_4$,20(S)-$Rg_3$,20(R)-$Rg_3$ and $Rg_4$. In addition to these known compounds, seven new ginsenosides, named as gisenoside $Rk_1$, $Rk_2$, $Rk_3$, $Rs_4$, $Rs_5$, $Rs_6$, and $Rs_7$ were isolated. The major constituents of new processed ginseng were 20(S)-$Rg_3$,20(R)-$Rg_3$, $Rk_1$ and $Rg_5$ which are minors in red ginseng. Since the chemical constituents and biological activities of this new processed ginseng are quite different from those of white or red ginseng, we designated it as $'$sun ginseng (仙蔘)$'$.s;$.

  • PDF

Current Status of processing and Research Trends in Ginseng Products (인삼제품의 가공현황과 연구 동향)

  • 양재원
    • Journal of Ginseng Research
    • /
    • v.20 no.4
    • /
    • pp.501-519
    • /
    • 1996
  • There are two kinds of commercially available ginseng root, red ginseng and white ginseng processed from fresh ginseng root Those ginsengs are primary product from fresh ginseng root and have the characteristic of keeping their original root shape Processed ginseng products are made from either red ginseng or white ginseng by way of complicated process of pulverization. Extraction. Condensation, fettering, sterilization, etc. Among them there are extracts. extract powder, powder, capsules tablets, Candy, drinks, nectar, jelly, gums. chicken soup. tonic. etc. to meet the demand for consumer's pretheronce . The 200 kinds of processed secondary products are approximately produced in the form of 20 kinds of ginseng products by about 60 domestic companies. In spite of about 213.000 million won of domestic market in 1993. it seems like that the ginseng market of the future has not a good prospects The total market sale of white ginseng in Korea has been continuously decreased since 1991 And 963 tons of white ginseng was consumed in domestic market in 1993 The domestic market sales of white ginseng in origina1 root shave. was 90, 000 million won in 1993 and market price of the fine root used as a source of processed products has not been changed in these ten years. The total market sale of red ginseng and its processed products was 58, 000 million won in 1993 9.800 mi11ion won of red ginseng in original root shape and 48.000mi11ion of processed red ginseng product. Ginseng products such as extracts, drinks, teas and tonics etc atre mostly exported to south-east Asia. And the total exports of ginseng pi.oducts (extracts, drinks teas) decreased to 54 million dollars in 1994, compared with 85 million dollars in 1992. Despite of extensive knowledge about ginseng little is still known about the development of new processed ginseng pl.oducts because of "Know-How". Some papars have presented the effects of extracting method(amounts of solvent. time. temperature, equipment. etc.) on the quality and yields of ginseng extr acts. Also. some researchers have carried out a few studies on the poriflcation of the extracts and the amounts of precipitation in the drink at variotas pH during the storage for preventinly drink from precipitation. A fell studies on the preservation of Korean ginseng powder. tea. Extract powder by irradiation and ozone treatment have been reported by some researcher for the improvement hygienic quality of ginseng products There are also some reports about the effects of ginseng components on the acid production by lactic acid bacteria or acetic acid bacteria. and alcohol production by yeast for the development of new ginseng products processed by fermentation. To make ginseng more able to contribute to the health of mankind in the future. consistent and considerable efforts should be focussed on improving the taste of ginseng and developing various new product as a health food or a function food.tion food.

  • PDF

A Ginseng Saponin Induces Production of Nitric Oxide in Macrophages (인삼사포닌에 의한 대식세포 일산화질소 생성 유도)

  • Kim Ji Yeon;Lee Hwa Jin;Kim Ji Sun;Ahn Hanna;Ryu Jae-Ha
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.80-85
    • /
    • 2005
  • Ginseng root is an important remedy in oriental countries, which has been used for thousands of years. Saponins of ginseng root has been known to be the major component which mediate diverse pharmacological actions of the ginseng. Heat processing of ginseng root potentiates its biological activity such as anti-tumor and anti-oxidative activities. The butanol fraction of heat-processed ginseng (HGB) induced the production of nitric oxide in macrophages in a dose-dependent manner with IFN-${\gamma}$(30 U/ml) priming. The active component was identified as ginsenoside-$Rg_5$ from the activity-guided purification. Ginsenoside $Rg_5$ is one of major components of heat-processed ginseng and red ginseng that is responsible for the potentiated biological activities of processed ginseng. The induction of NO production by heat-processed ginseng might contribute to the potentiated biological activity of heat-processed ginseng.

Evaluation of storage period of fresh ginseng for quality improvement of dried and red processed varieties

  • Zhang, Na;Huang, Xin;Guo, Yun-Long;Yue, Hao;Chen, Chang-Bao;Liu, Shu-Ying
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.290-295
    • /
    • 2022
  • Background: Dried and red ginseng are well-known types of processed ginseng and are widely used as healthy food. The dried and red ginseng quality may vary with the storage period of raw ginseng. Therefore, herein, the effect of the storage period of fresh ginseng on processed ginseng quality was evaluated through multicomponent quantification with statistical analysis. Methods: A method based on ultrahigh performance liquid chromatography coupled to triple quadrupole mass spectrometry in multiple-reaction monitoring mode (UPLC-MRM-MS) was developed for quantitation of ginsenosides and oligosaccharides in dried and red ginseng. Principal component analysis and partial least squares discriminant analysis were conducted to evaluate the dynamic distributions of ginsenosides and oligosaccharides after different storage periods. Results: Eighteen PPD, PPT and OLE ginsenosides and nine reducing and nonreducing oligosaccharides were identified and quantified. With storage period extension, the ginsenoside content in the processed ginseng increased slightly in the first 2 weeks and decreased gradually in the following 9 weeks. The content of reducing oligosaccharides decreased continuously as storage time extending, while that of the nonreducing oligosaccharides increased. Chemical conversions occurred during storage, based on which potential chemical markers for the storage period evaluation of fresh ginseng were screened. Conclusion: According to ginsenoside and oligosaccharide distributions, it was found that the optimal storage period was 2 weeks and that the storage period of fresh ginseng should not exceed 4 weeks at 0 ℃. This study provides deep insights into the quality control of processed ginseng and comprehensive factors for storage of raw ginseng.

Change of Ginsenoside Composition in Ginseng Extract by Vinegar Process

  • Ko, Sung-Kwon;Lee, Kyung-Hee;Hong, Jun-Kee;Kang, Sung-An;Sohn, Uy-Dong;Im, Byung-Ok;Han, Sung-Tai;Yang, Byung-Wook;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.509-513
    • /
    • 2005
  • The purpose of this study was to develop a new preparation process of ginseng extract using high concentrations of ginsenoside $Rg_3$, a special component in red ginseng. From when the ginseng saponin glycosides transformed into the prosapogenins chemically, they were analyzed using the HPLC method. The ginseng and ginseng extract were processed with several treatment conditions of an edible brewing vinegar. The results indicated that ginsenoside $Rg_3$ quantities increased over 4% at the pH 2-4 level of vinegar treatment. This occurred at temperatures above $R90^{\circ}C$, but not occurred at other pH and temperature condition. In addition, the ginseng and ginseng extract were processed with the twice-brewed vinegar (about 14% acidity). This produced about 1.5 times more ginsenoside $Rg_3$ than those processed with regular amounts of brewing vinegar (about 7% acidity) and persimmon vinegar (about 3% acidity). Though the white ginseng extract was processed with the brewing vinegar over four hr, there was no change for ginsenoside $Rg_3$. However, the VG8-7 was the highest amount of ginsenoside $Rg_3$ (4.71%) in the white ginseng extract, which was processed with the twice-brewed vinegar for nine hr. These results indicate that ginseng treated with vinegar had 10 times the quantity of ginsenoside $Rg_3$, compared to the amount of ginsenoside $Rg_3$ in the generally commercial red ginseng, while ginsenoside $Rg_3$ was not found in raw and white ginseng.

Ginsenoside Composition Changes in Ginseng Extracts by Different Ascorbic Acid Treatments

  • Ko, Sung-Kwon;Cho, Ok-Sun;Bae, Hye-Min;Sohn, Uy-Dong;Im, Byung-Ok;Cho, Soon-Hyun;Yang, Byung-Wook;Chung, Sung-Hyun;Shin, Wang-Soo;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.883-887
    • /
    • 2008
  • The purpose of this study was to develop a new preparation process for chemical transformation of ginseng saponin glycosides to prosapogenins. Ginseng and ginseng extracts were processed under several treatment conditions using ascorbic acid solution. Treating with ascorbic acid at pH 2-3 and above $80^{\circ}C$ increased the ginsenoside $Rg_3$ content of samples to over 3% as compared to other pH levels and temperatures. In addition, ginseng and ginseng extracts that were processed under a high ascorbic acid solution treatment condition (pH 2.0, 5 hr) contained more ginsenoside $Rg_3$ (approximately 16 times) than those processed under a low ascorbic acid solution treatment condition (pH 3.0, 5 hr). The highest quantity of ginsenoside $Rg_3$ (3.434%) occurred when a sample of fine ginseng root extract (AG2-9) was processed with the ascorbic acid solution at pH 2.0 for 9 hr. However, there was no change in the amount of ginsenoside $Rg_3$ when fine ginseng root extracts were processed with ascorbic acid solution at pH 2.0 for over 9 hr. In conclusion, the results indicated that ascorbic acid treatment of ginseng extracts can produce a level of ginsenoside $Rg_3$ that is over 90-fold the amount found in commercial red ginseng.

Processing factors of azoxystrobin in processed ginseng products (인삼 가공품 중 azoxystrobin의 가공계수)

  • Lee, Jae-Yun;Noh, Hyun-Ho;Lee, Kwang-Hun;Park, Hyo-Kyoung;Oh, Jae-Ho;Im, Moo-Hyeog;Kwon, Chan-Hyeok;Lee, Joong-Keun;Woo, Hee-Dong;Kwon, Ki-Sung;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • This study was carried out to evaluate the residual characteristics of azoxystrobin in fresh ginseng and calculate its processing factors in processed products, such as dried ginseng, red ginseng and their extracts. Azoxystrobin was sprayed annually onto four-year-old ginseng according to its pre-harvest interval (PHI) for two years. Harvested ginsengs were processed according to the commercially well-qualified conventional methods provided by the Korea Ginseng Corporation. Limits of detection (LODs) of azoxystrobin in fresh ginseng and its processed products were 0.001 and 0.002 mg/kg, respectively. Also limits of quantitation (LOQs) in fresh ginseng and its processed products were 0.003 and 0.007 mg/kg, respectively. Recoveries of the analytical methods in fresh ginseng and its processed products ranged from 69.3 to 114.8%. Highest residue amounts in fresh ginseng and its processed products were 0.025 and 0.118 mg/kg, respectively. Processing factors of the processed products ranged from 1.85 to 3.17 in four-year-old ginseng and from 2.48 to 5.84 five-year-old ginseng.

Residual Characteristics of Diethofencarb during Ginseng Cultivation and Processing (인삼 중 Diethofencarb의 재배포장 및 가공에 따른 잔류특성)

  • Na, Eun Shik;Lee, Yong Jae;Kim, Seong Soo;Seo, Hyun Seok;Ryu, June Sang;Jo, Seung Hyeon;Noh, Hyun Ho;Kim, Dan Bi
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.83-88
    • /
    • 2020
  • BACKGROUND: This study was carried out to investigate residual characteristics of diethofencarb during ginseng cultivation and processing, and to establish the maximum residue limits (MRL) of ginseng and its processed products. METHODS AND RESULTS: Supervised field trials were conducted from three fields located at Seosan, Goesan and Jeongeup in Korea. Diethofencarb 25% WP was diluted by 500 times and sprayed 4 times onto the ginseng with 10 days interval. The samples were collected at 80 days after final application. The residual amounts of diethofencarb ranged from 0.074 to 0.460 mg/kg in fresh ginseng, from 0.292 to 0.720 mg/kg in dried ginseng, and from 0.208 to 0.557 mg/kg in red ginseng. These data exceeded the ginseng's MRL, 0.3 mg/kg. The processing factors of diethofencarb in processed products were found to be 2.64 and 1.99, respectively for dried and red ginseng. CONCLUSION: Given the lower residual concentration of red ginseng that goes through a more complicated process than dried ginseng, the residual concentrations of diethofencarb in processed ginseng products were found to be dependent on processing method. Therefore, it is necessary to reconsider the MRL of diethofencarb in fresh ginseng and its processed products.