• Title/Summary/Keyword: Process of manufacture

Search Result 1,585, Processing Time 0.031 seconds

Mineralogical and Physico-chemical Properties of Fine fractions Remained after Crushed Sand Manufacture (국내 화강암류를 이용한 일부 인공쇄석사 제조과정에서 생기는 스러지의 광물.물리화학적 특성)

  • Yoo, Jang-Han;Ahn, Gi-Oh;Jang, Jun-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.355-361
    • /
    • 2006
  • Artificially crushed sands occupy approximately 30 percent of the total consumption in South Korea. The demand for the crushed sands is expected to rise in the future. Most manufacturers use granitic rocks to produce the crushed sands. During the manufacturing process, fine fractions (i.e., sludges or particles smaller than 63 microns) are removed through the process of flocculation. The fine fraction occupies about 15% of the total weight. The sludges are comprised of quartz, feldspars, calcite, and various kinds of clay minerals. Non-clay minerals occupy more than 75 percent of the sluges weight, according to the XRD semi-quantification measurement. Micas, kaolinites, chlorite, vermiculite, and smectites occur as minor constituents. The sludges from Jurassic granites contain more kaolinites and $14{\AA}$-types than those from the Cretaceous ones. The chemical analysis clearly shows the difference between the parent rocks and the sludges in chemical compositions. Much of colored components in the sludges was accumulated as the weathering products. Particle size analysis results show that the sludges can be categorized as silt loam in a sand-silt-clay triangular diagram. This result was for her confirmed by the hydraulic conductivity data. In South Korea, the sludges remained after crushed sand production are classified as an industrial waste because of their impermeability, and which is caused by their high silt and clay fractions.

Springback Minimization using Bottoming in Al Can Deep Drawing Process (알루미늄 캔 딥드로잉에서 Bottoming을 이용한 스프링백 최소화)

  • Park, Sang-Min;Lee, Sa-Rang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.302-307
    • /
    • 2016
  • The technology of multistage deep drawing has been widely applied in the metal forming industry, in order to reduce both the manufacturing cost and time. A battery can used for mobile phone production is a well-known example of multistage deep drawing. It is very difficult to manufacture a battery can, however, because of its large thickness to height aspect ratio. Furthermore, the production of the final parts may result in assembly failure due to springback after multistage deep drawing. In industry, empirical methods such as over bending, corner setting and ironing have been used to reduce springback. In this study, a bottoming approach using the finite element method is proposed as a practical and scientific method of reducing springback. Bottoming induces compression stress in the deformed blank at the final stroke of the punch and, thus, has the effect of reducing springback. Different cases of the bottoming process are studied using the finite element program, DYNAFORM, to determine the optimal die design. The results of the springback simulation after bottoming were found to be in good agreement with the experimental results. In conclusion, the proposed bottoming method is expected to be widely used as a practical method of reducing springback in industry.

Manufacturing technology and restoration of gilt-bronze shoes from the ancient tombs in Jeongchon Village, Bogam-ri in Naju (나주 복암리 정촌고분 출토 금동신발의 제작기술과 복원)

  • Lee, Hyun-sang;Lee, Hye-Youn;Oh, Dong-sun;Kang, Min-jeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.92-107
    • /
    • 2018
  • In 2013~2016, gilt-bronze shoes were excavated from the ancient tombs in Jeongchon Village located at Bogam-ri, Dasi-myeon in Naju. They are estimated to have been made in the late 5th or early 6th centuries. The gilt-bronze shoes are significant in that they serve to explicate the relationship between the center of Baekje and the local forces in the Yeongsan River Basin. This study's specific focus was the gilt-bronze shoes from the ancient tombs in Jeongchon Village. Based on the findings, a restoration drawing was designed and restored products were manufactured by considering metalwork techniques used to manufacture the original ones. At first, manufacturing techniques were tested by using a scientific analysis and visual observation. The manufacturing method, structures, and patterns of the gilt-bronze shoes were closely examined. Then, a design drawing of gilt-bronze shoes was created through field measurement and they were recreated on the basis of the analysis. The original form of the restored products were manufactured through cutting out the outward form, bore carving, engraving, molding, plating, and an assembly process. In the restoration process, this study examined the formal characteristics of gilt-bronze shoes, manufacturing techniques, and archetypes during Baekje's late Hanseong era. Products restored from this study are expected to be used as achievements for more easily understanding the culture of Baekje.

A Study on the Prediction of Nugget Diameter of Resistance Spot Welded Part of 1.2GPa Ultra High Strength TRIP Steel for Vehicle (차체용 1.2GPa급 초고장력 TRIP강판의 저항 점 용접부 너겟 지름 예측에 관한 연구)

  • Shin, Seok-Woo;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.52-60
    • /
    • 2018
  • In the automobile industry, in order to increase the fuel efficiency and conform to the safety regulations, it is necessary to make the vehicles as light as possible. Therefore, it is crucial to manufacture dual phase steels, complex phases steels, MS steels, TRIP steels, and TWIP from high strength steels with a tensile strength of 700Mpa or more. In order to apply ultra-high tensile strength steel to the body, the welding process is essential. Resistance spot welding, which is advantageous in terms of its cost, is used in more than 80% of cases in body welding. It is generally accepted that ultra-high tensile strength steel has poor weldability, because its alloy element content is increased to improve its strength. In the case of the resistance spot welding of ultra-high tensile steel, it has been reported that the proper welding condition area is reduced and interfacial fracture and partial interfacial fracture occur in the weld zone. Therefore, research into the welding quality judgment that can predict the defect and quality in real time is being actively conducted. In this study, the dynamic resistance of the weld was monitored using the secondary circuit process variables detected during resistance spot welding, and the factors necessary for the determination of the welding quality were extracted from the dynamic resistance pattern. The correlations between the extracted factors and the weld quality were analyzed and a regression analysis was carried out using highly correlated pendulums. Based on this research, a regression model that can be applied to the field was proposed.

A Study on Properites of PV Solar cell AZO thin films post-annealing by RTP technique (RTP 공정을 통한 태양전지용 AZO 박막의 후열처리 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Han, Chang-Jun;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Deok;Lee, Suk-Ho;Back, Su-Ung;Na, Kil-Ju;Jeong, Woon-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.127.1-127.1
    • /
    • 2011
  • In this paper, ZnO:Al thin films with c-axis preferred orientation were prepared on Soda lime glass substrates by RF magnetron sputtering technique. AZO thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the AZO were vapor-deposited in the named order. It is well-known that post-annealing is an important method to improve crystal quality. For the annealing process, the dislocation nd other defects arise in the material and adsorption/decomposition occurs. The XRD patterns of the AZO films deposited with grey theory prediction design, annealed in a vacuum ambient($2.0{\times}10-3$Torr)at temperatures of 200, 300, 400 and $500^{\circ}C$ for a period of 30min. The diffraction patterns of all the films show the AZO films had a hexagonal wurtzite structure with a preferential orientation along the c-axis perpendicular to the substrate surface. As can be seen, the (002)peak intensities of the AZO films became more intense and sharper when the annealing temperature increased. On the other hand, When the annealing temperature was $500^{\circ}C$ the peak intensity decreased. The surface morphologies and surface toughness of films were examined by atomic force microscopy(AFM, XE-100, PSIA). Electrical resistivity, Gall mobility and carrier concentration were measured by Hall effect measuring system (HL5500PC, Accent optical Technology, USA). The optical absorption spectra of films in the ultraviolet-visibleinfrared( UV-Vis-IR) region were recorder by the UV spectrophotometer(U-3501, Hitachi, Japan). The resistivity, carrier concentration, and Hall mobility of ZnS deposited on glass substrate as a function of post-annealing.

  • PDF

Non Thermal Process and Quality Changes of Foxtail Millet Yakju by Micro Filtration (미세여과에 의한 비 가열살균 좁쌀약주의 제조 및 저장 중 품질변화)

  • Kang, Young-Joo;Oh, Young-Ju;Koh, Jeong-Sam
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.277-284
    • /
    • 2005
  • Micro-filtration (MF) or ultra-filtration (UF) system with hollow-fiber cartridge was introduced in order to improve the Quality level of commercial foxtail millet Yakju, which has an off-flavour and/or undesired colour after the thermal treatment. The filtration effects of cartridges such as MF (0.65, 0.45, 0.2, 0.1 $\mu$m) and UF (500 K dalton) were investigated. The physicochemical and sensory characteristics of the Yakju were then evaluated during the 6 months storage at room temperature. The exclusion ability of microorganism in samples was confirmed in all cartridges, but 0.45 pm MF-cartridge was suitable in the Yakju manufacture due to its superior filtration rate and efficiency. Changes in reducing sugar and colour difference of foxtail millet Yakju untreated or treated by heat ($65^{\circ}C$${\times}$10 min) were observed during the storage; after 6 months the L-value of thermal-treatment sample was decreased and its b-value, however, significantly increased so that its color became dark, in comparison to non-thermal treatment sample. This decrease of reducing sugar is assumed that color change is associated with non-enzymatic browning reaction. Sensory Quality of foxtail millet Yakju produced by non-thermal treatment was better than that of thermal treatment.

Numerical Analysis of Flow Characteristies inside innes part of Fluid Control Valve System (유동해석을 통한 유체제어벨브 시스템의 내부 유동 특성 분석)

  • Son, Chang-Woo;Seo, Tae-Il;Kim, Kwang-Hee;Lee, Sun-Ryong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.160-166
    • /
    • 2018
  • The worldwide semi-conductor market has been growing for a long time. Manufacturing lines of semi-conductors need to handle several types of toxic gases. In particular, they need to be controlled accurately in real time. This type of toxic gas control system consists of many different kinds of parts, e.g., fittings, valves, tubes, filters, and regulators. These parts obviously need to be manufactured precisely and be corrosion resistant because they have to control high pressure gases for long periods without any leakage. For this, surface machining and hardening technologies of the metal block and metal gasket need to be studied. This type of study depends on various factors, such as geometric shapes, part materials, surface hardening method, and gas pressures. This paper presents strong concerns on a series of simulation processes regarding the differences between the inlet and outlet pressures considering several different fluid velocity, tube diameters, and V-angles. Indeed, this study will very helpful to determine the important design factors as well as precisely manufacture these parts. The EP (Electrolytic Polishing) process was used to obtain cleaner surfaces, and hardness tests were carried out after the EP process.

The Construction Work Method of Mixed Coal Ash in Ash Pond to Recycle as a Horizontal Drain Material (수평배수재로 재활용하는 회사장 혼합석탄재의 시공 방안)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • The design for horizontal drain layer on soft ground starts from the decision that the material could be used or not, by verifying material condition in permeability of horizontal drain material according to the weight percent of the dry soil retained on #200 sieve. In the next step of the design, we estimate the thickness of horizontal drain layer to confirm trafficability of heavy machinery in construction work. Successively, the long-term functionality for good drainage of horizontal drain layer is checked and if needed, some means are considered. In this study, the system to recycle mixed coal ash in ash pond successfully as a horizontal drain material on soft ground is presented through the process and the result of its practical construction work. Namely, the pact is confirmed that mixed coal ash in ash pond should be sorted out by sieve screen to a certain extent and the remainders of this mixed coal ash on sieve openings be recycled, because the amount of finer particles than $75{\mu}m$ contained in mixed coal ash in ash pond is quite massive and irregular depending on the coal power plant or the location in same ash pond. In order to sort at large scale in situ, the dimension of a sieve squre hole and the sort-out method, etc. should be decided before the sort-out process. And, it is described that we need to manufacture classifier to sort out mixed coal ash in ash pond, too.

Manufacture of Fermented Cantaloupe Melon with Lactic Starter Culture (유산균을 이용한 참외 발효식품의 제조)

  • Cha, Seong-Kwan;Chun, Hyong-Il;Hong, Seok-San;Kim, Wang-June;Koo, Young-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.386-390
    • /
    • 1993
  • Addition of starch syrup, table sugar, potato powder, skim milk powder an parched soybean powder to melon flesh was suitable as fermented melon base. The manufacturing process of fermented melon was as follows: Pasteurization for 10 min at $95^{\circ}C$, use of 1% starter culture, fermentation for 12 hours at $35^{\circ}C$ and ripening for 3 days at $8^{\circ}C$. The growth and acid production of Pediococcus acidilactici among several starter cultures were most active for the first 12 hours, but such activities were disappeared during ripening. In the case of Lactobacillus plantarum, the activities were not high during fermentation, which, however, increased during ripening. Throughout the whole manufacturing process, the fermented melon with a mixed culture of P. acidilactici and L. plantarum showed more cell number of each bacterium and higher titratable acidity than that with single cultures. Also P. acidilactici surpressed the growth of L. plantarum during ripening.

  • PDF

The Effect of Additives on the High Current Density Copper Electroplating (고전류밀도에서 첨가제에 따른 구리도급의 표면 특성 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Hur, Ki-Su;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • The current density in copper electroplating is directly related with the productivity and then to increase the productivity, the increase in current density is required. To obtain the high mass flow rate, rotating disk electrode(RDE) was employed. High rotational speed in RDE can increase the mass flow rate and then high speed electroplating was possible using RDE to control mass flow. Two types of cathode were used. One is RDE and another is rotating cylindrical electrode(RCE). A constant-current, constant-voltage and linear sweep voltammetry were applied to investigate current and voltage relationship. The maximum current density without evolution of hydrogen gas was increased with rotational speed. Over 400 rpm, maximum current density was higher than 1000 A/$m^2$. The diffusion coefficients of copper calculated from the slope of the plots are $5.5{\times}10^6\;cm^2\;s^{-1}$ at $25^{\circ}C$ and $10.5{\times}10^6\;cm^2\;s^{-1}$ at $62^{\circ}C$. The stable voltage without evolution of hydrogen gas was -0.05 V(vs Ag/AgCl). Additives were added to prevent dendritic growth on cathode deposits. The surface roughness was analyzed with UV-Vis Spectrophotometer. The reflectance of the copper surface over 600 nm was measured and was related with the surface roughness. As the surface roughness improved, the reflectance was also increased.