• Title/Summary/Keyword: Process fault

Search Result 936, Processing Time 0.041 seconds

Fault Current Discrimination of Power Line using Phase Space (위상평면을 이용한 전력선의 고장전류 판별)

  • Jeong, Jong-Won;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.86-88
    • /
    • 2009
  • This article suggests an online-based remote fault current mode discrimination method in order to identify the causes of the power line faults with various causes. For that, it refers to existing cause identification methods and categorizes modes by fault causes based on statistical techniques beforehand and performs the pre-treatment process of fault currents by each cause acquired from the fault recorder into a phase space in order to extract the characteristics of fault currents by each cause. After that, for the fault mode categorization, it discriminates modes by each cause using data by each cause as leaning data through utilizing RBF network. And then it tests the validity of the suggested method as applying it to the data of the actual fault currents acquired from the fault recorder in the electric power transmission center.

  • PDF

Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System (지적보전시스템의 실시간 다중고장진단 기법 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

Fault Detection in Diecasting Process Based on Deep-Learning (다단계 딥러닝 기반 다이캐스팅 공정 불량 검출)

  • Jeongsu Lee;Youngsim, Choi
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.369-376
    • /
    • 2022
  • The die-casting process is an important process for various industries, but there are limitations in the profitability and productivity of related companies due to the high defect rate. In order to overcome this, this study has developed die-casting fault detection modules based on industrial AI technologies. The developed module is constructed from three-stage models depending on the characteristics of the dataset. The first-stage model conducts fault detection based on supervised learning from the dataset without labels. The second-stage model realizes one-class classification based on semi-supervised learning, where the dataset only has production success labels. The third-stage model corresponds to fault detection based on supervised learning, where the dataset includes a small amount of production failure cases. The developed fault detection module exhibited outstanding performance with roughly 96% accuracy for actual process data.

A Study on the Fault Diagnosis Applied to the Grinding Power Signals (연삭 동력신호를 응용한 결함진단에 관한 연구)

  • 곽재섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.108-116
    • /
    • 2000
  • Undesired trouble such as chatter vibration and burning on the ground surface appears frequently in the cylindrical plunge grinding process. Establishment of a credible fault diagnostic system for the grinding process is the major purpose of this study. Power signals generated during the grinding operation were sampled and analyzed to determine the relationship between grinding troubles and behavior of signal changes. In addition, a neural network was optimized with a momentum coefficient a learning rate, and a structure of the hidden layer through the iterative learning process. Based on the established system, success rates of the trouble recognition were verified.

  • PDF

A Comparative Study on Safely Analysis Methodology of Chemical Process (화학공정 안전성평가 기법에 관한 비교 연구)

  • 변윤섭;안대명;황규석
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.64-72
    • /
    • 2003
  • A new reliability assessment methodology is presented and the new method is compared with fault tree analysis. The system is modeled by directed graph at a new methodology, which is composed of nodes and arcs. The directed graph corresponds to the layout of chemical process and is easy to construct. Therefore, the directed graph analysis is applicable to the chemical process that has complex sequence. The example of fault tree analysis and directed graph analysis is given. The directed graph analysis has proved to be a valuable and useful method for the reliability assessment of chemical process.

Semi-Supervised Learning for Fault Detection and Classification of Plasma Etch Equipment (준지도학습 기반 반도체 공정 이상 상태 감지 및 분류)

  • Lee, Yong Ho;Choi, Jeong Eun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.121-125
    • /
    • 2020
  • With miniaturization of semiconductor, the manufacturing process become more complex, and undetected small changes in the state of the equipment have unexpectedly changed the process results. Fault detection classification (FDC) system that conducts more active data analysis is feasible to achieve more precise manufacturing process control with advanced machine learning method. However, applying machine learning, especially in supervised learning criteria, requires an arduous data labeling process for the construction of machine learning data. In this paper, we propose a semi-supervised learning to minimize the data labeling work for the data preprocessing. We employed equipment status variable identification (SVID) data and optical emission spectroscopy data (OES) in silicon etch with SF6/O2/Ar gas mixture, and the result shows as high as 95.2% of labeling accuracy with the suggested semi-supervised learning algorithm.

Integration of Image Regions and Product Components Information to Support Fault (조립체 결함 분석 지원을 위한 영상 영역과 부품 정보의 병합 ^x Integration of Image Regions and Product Components Information to Support Fault)

  • Kim, Sun-Hee;Kim, Kyoung-Yun;Lee, Hyung-Jae;Kwon, Oh-Byung;Yang, Hyung-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.11
    • /
    • pp.266-275
    • /
    • 2006
  • Mostly mechanical products are connected by several components instead of single accessory in product process. Although majority of assembly process is automated, the fault analysis is not automated because it needs expert knowledge in various fields to support inclusive decision-marking. This paper proposes an assembly fault analysis support system that uses image regions which can be easily accessed and understood by experts of various fields. An assembly fault analysis support system helps effective fault analysis from assembly by integrating image regions, product design information, and fault detection information. The proposed method enables fault information access from multimedia information by segmenting product images. After product images are segmented by labeling, design information and fault information are integrated in extended Attributed Relational Graph.

  • PDF

Experimental research on the effect of water-rock interaction in filling media of fault structure

  • Faxu, Dong;Zhang, Peng;Sun, Wenbin;Zhou, Shaoliang;Kong, Lingjun
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.471-478
    • /
    • 2021
  • Water damage is one of the five disasters that affect the safety of coal mine production. The erosion of rocks by water is a very important link in the process of water inrush induced by fault activation. Through the observation and experiment of fault filling samples, according to the existing rock classification standards, fault sediments are divided into breccia, dynamic metamorphic schist and mudstone. Similar materials are developed with the characteristics of particle size distribution, cementation strength and water rationality, and then relevant tests and analyses are carried out. The experimental results show that the water-rock interaction mainly reduces the compressive strength, mechanical strength, cohesion and friction Angle of similar materials, and cracks or deformations are easy to occur under uniaxial load, which may be an important process of water inrush induced by fault activation. Mechanical experiment of similar material specimen can not only save time and cost of large scale experiment, but also master the direction and method of the experiment. The research provides a new idea for the failure process of rock structure in fault activation water inrush.

Fault Tolerant Controller Design for Linear Stochastic Systems with Uncertainties (불확실성을 갖는 선형 확률적 시스템에 대한 고장허용제어기 설계)

  • Lee, Jong-Hyo;Yoo, Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.107-116
    • /
    • 2003
  • This paper presents a systematic design methodology for fault tolerant controller against a fault in actuators and sensors of linear stochastic systems with uncertainties. The scheme is based on fault detection and diagnosis(isolation and estimation) using a bank of robust two-stage Kalman filters, and accommodation of the actuator fault by eigenstructure assignment and immediate compensation of the sensor's faulty measurement. In order to clarify the fault feature in test statistics of residual, noise reduction method is given by multi-scale discrete wavelet transform. The effectiveness of our approach Is shown via simulations for a VTOL(vertical take-off and landing) aircraft subjected to parameter variations, external disturbances, process and sensor noises.