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A study on the Fault Diagnosis Applied to the Grinding Power Signals
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I Abstract

|

Undesired trouble such as chatter vibration and burning on the ground surface appears frequently in the cylindrical
plunge grinding process. Establishment of a credible fanlt diagnestic system for the grinding process is the major purposc
of this study. Power signals generated during the grinding operation were sampled and analyzed to determine the relation-
ship between grinding troubles and behavior of signal changes. In addition, a neural network that has an excellent ability
for pattem classification was accupied for the trouble recognition, The neural network was optimized with a momentum
coefficient, a learning ratc, and a structure of the hidden layer through the iterative leaming process. Based on ihe cstab-
lished system, success rates of the trouble recognition were verified.
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1. Introduction

Grinding operation has been used in machining the prect-
sion products that cannot be met for surface roughness and
geometric tolerances with traditional cutting operations.
With an increase in demand for near net shape technique in
precision components, more impraved grinding perfor-
mance 13 required. However, there are unique characleris-
tics of the prinding process. For example, as apposed to a

2anGE A7 sA 7L
o RAWa S AA AR

108

orung tool, grinding wheels contain many graing thal are
randomly spaced and occupied in the periphery of the
wheel. For this reason, a mathematical approach with
respect to the grindmg process includes many functional
parameters that cannot certify their quantitative relations. #

Grindmg burnt 1s one of the troubling phenomena that
happen to the ground surface. 11 is related 1o Lhe thickness
of the oxide layer, which s affected by the maximum tem-

perature at the cutting zone.” The generated burn deterio-
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rates the surface performance of a product. The other (rou-
ble is a chatter vibration that is relative motion between the
grinding wheel and the workpiece. As a result of this
motion, the grownd surface meludes the undesired mtegrty
and, 1 some cascs, the damage. In addition, the mereased
grinding force associated with the chatter vibration leads to
accelerate a wheel wear” The investigation deserbed 1n
this research [ocuses on the development of a credible trou-
ble detection system for the gnnding process.

The power signals obtained from an mduced molm of a
griading machine were analyzed to detenmne the relation-
ship between grinding troubles and behavior of signal
changes. Furthermore. a neural nelwork having an excellent
ability for pattern classification was applied lo the trouble
detection syslern. The neural network was optimized with a
momentum cacflicient, a leaming rate, and a struclure of
the tudden layer in the iteralive learning process, The sue-
cess rafes 1o verify the degree of troubie detection were
evalualed with a new Jearning datp set.

2. Troubling Phenomena in the Grinding
Operation

Workpiece burn during the grinding process is cssentially
a kind of ireversible changes in microstructure of the sur-
{ace layer taken place under the action of contimuous high
temperatures at the grinding zone. Visual observation of
grnding burn 15 due to femper colors from very thin oxide
layers an the workpiece surface. This layer for ferrous
and FeO
membrancs from a free surlace. At the ensel of grmding

material is composed of, in mm, Fe,0., Fe,O,,
burn. the grinding force and rate of wheel wear mcieases
sharply, and the surface rouglmess deteriorates.

§. Malkin® proposed a erilical limit of grinding burn with
respect to various tems m surface prinding. Based on his
research, grmdimg bum appears easily on the surface of the
warkpiece when smaller abrasives, higher grades of the
grinding wheels and more hardened matenals are used.
Chatler vibranon is a dynamic instabiliy of most machin-
ing processes, nchuding gnnding, and is considered (o be
the most serious phenomenon of surfizce quality, In general,
it limits the productivity of the machimng process and caus-

es detenjoration of the workpiece surface mtegnty More-
aver, in grinding, the growth of wavy surface on the grind-
ing wheel mduced by the chater vibration results in the
need [or interruption of the grinding process and for dress-
ing Lhe wheel.

Grinding processes are oflen selected for the final finish-
mg of a component because of their ability 1o satisfy stret
requirements of surface roughness. However, i the case of
grinding trouble generation, a finer allowable range of sur-
face roughness is not maintamed The fine scale morpholo-
gy ol the surfaces produced by the grinding operation con-
sists mostly of overlapping scraiches generated by the inter-
ac(ion of abrasive cutting pomts with the workpiece. An
exapiple of a typical ground surface is shown in Figure
1{a} In this example of cylindrical plunge grinding, the
uniform abrasive motion relative to the warkpiece is readily
idenitfied fom the direction of the scratches.
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{2) Normal state
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{b) Bumning state

Ra: 2.85 un

(¢) Chatter vibration state
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3. 1 Surface integrity changes in the plunge grinding
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The ground surface morphology is further connplicated by
other phenomena, The grinding buin of the workpiece often
ccclis, especially with adhesive materials. Metals adhering
between voids withm the grinding wheel constrict the acion
of machining. Thercfore, the grindimg operation becaines an
abnomal state and the grinding temperauure mstantaneously
rises about 1,000°C. Due lo fising temperatures, the work-
prece strface is bumt as shown in Figure 1(b).

Figure 1(c) shows the chatter vibration of a ground sur-
face. Af this time, the grinding process is in an unsisble
state. Chatter marks, which are normal to grinding direc-
tion, can he seen on the ground surface. As the grinding
bumn and chatter vibration take place, surface roughness
deterioration is evident.

Figure 2 shows the variation of surface roughness
according to the nuimber of preces. The values of surface
roughness are slightly mereased in the nommal state of
erinding, but rapdly increased in trouble states. Tn order to
produce 2 satisfactory product, 11 is evident that grinding
troubles, such as grmding burn and chatter vibration, must
be avauded by credible methods.

3. Experimentation for Acquiring the
Trouble Data

3.1 Experimental Method

A schemaie experimental setup is shown in Figure3.

A series of prinding tests was conducted on a cylindrical
grinder wilth a 228 mm diameter, WA50LmV, wheel
which is commenly used in workshops. Specimens

110

Wheet  Grinditg Motor (AC)

[need Handlle

# Swve Daca (Fower Sigoal)
o Dale Procasaunyg

» Stahe Power

Fig. 3 Experimental setup for ireuble detection system

Table 1 Grinding eonditions for obiaining signals

I Conditions
| Type. WAGILmY
Size  ¢228* 24
Wheel speed Vs=27.1 m/3 (1,800 rpim)

Workpicee Malenial : STD1L (H,C 45)

Hens

Grinding whee!

Watkpece speed Vw=015-030m/s
Infeed 1ate 0.5~2.0 pmymin

| Single pomt diamond diesser
Dressing condition Depth of cut ; 0.0125 mm

Lead - 0.015 mmhev

STD1 1, which are preferred to the die and the mold materi-
als, were tested. A power monitor with a 10 kHz sampling
frequency was used to measure the signal changes durig

the minding operation. Oscilloscope visualized the power
signals obtained and pen recorder plotied. Signals outrun-
ning the power monitor werc converted from analog to dig-
ital. Digrtalized signals were slored w1 a personal computer.
Stared signals were analyzed throngh the data processing,
Grinding conditions used in monitoring the power signals
are lisied in Table 1.
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3.2 Experimental results and discussion

Figure 4 shows the typical form of power signals
obtained during the grinding operation. In the general case
shown in Figure 4(a), grinding power increases rapidly
with contact between the grinding wheel and the work-
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Fig. 4 Power signals obtained in the grinding process

piece. This time 1s the nitiative point of prinding, Afier
several seconds of this point, the grinding power setiles
down al a certain level of amplitude that is static power.
According to contimous machining operation, the grinding
power mostly maintams its level. When separation between
the grinding wheel and the workpiece is progressed, the
arinding power is suddenly reduced. These changes of
grmding power compose the grinding cycle”

Normally, slatic power remains with a constant magnt-
tude, but happens fo change its level. According to chatter
vibration and burning as shown in Fipure 4(c) and (d), stal-
ic pawers have a magnitude significantly different than the
aspecis shown in Figire 4(a) and (b). Therefore. the grind-
ing states can be predicted by monitoring the power signals.
To forecast the erinding states, the parametets of power sig-
nals are determined,

As shown in Figare 5, these parameters are Ts, P's, P,
and Pv. Ts is the settling time that is composed of a starting
point with a slope of 30" and a final point with a slope of
510 the horizental line, The sampled mean power divided
by machining tme 1s defined as the slopes. Static power Ps
1s the magnitude fom the starling noini to the ending peint
according 1o a vertical axis and presents an absolute level of
power generated in the prinding zone. Dynamic power P,
is a power component of high fequency and it flucluates
around the siatic power level. In the caleulation of dynamic
power, 1l was defined as the difference between maxinmum
power and minimum power within twenty sampled data on
the mid-point of total grinding 1imes. Finalty, power varia-

Power

Grinding Time

Fig. 5 Definition of the used parameters for power signals
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tion Pv is the difference of power between static power and
mean value of dynamic power on the mid-point of the total
grinding time.

Figure (a) shows static power characieristics according
to the mumber of grinding pieces. When the in-feed rate is
0.5 mm/min, static power increases gradually in a stable
state of the machining process. On the other hand, static
power with an in-feed rate ol 1.0 mun/mm ascends exces-
sively to generate a chatier vibration pointed to (A). In
opposition to the chatter vibration, the static power decreas-
es evidently with the generation of workpiece burning
pointed to (B}, Dypamic power characteristics are shown in
Figure 6(b). Dynamic power increases dramatically in gen-
cration of not only chatter vibration but also workpiece
burning,

Figure 6(c} shows the power vanation according to the
number of grinding pieces. Interesting results with respect
0 power variation were obtained. The power variation of
stable state is nearly constant but diverges from a rise and a
drop with the chatter vibration and workpicce burning
respectively. These behaviors of power variation are impor-
tant characteristics for monitoring the grinding state. A drop
in power variation is due to the loading that make whee)
disable to cut the materials because of an adhesion of
removed chips in the wheel void. Figure 6(d) shows the
seffling time characteristics according lo the number of
grinding pieces. Settling times were increased when the
chatter vibration or the workpiece buming were generated,

4. Development of Fault Diagnosis System

4.1 Learning Theory of the Neural Networks

Artificial neural networks have been studied for many
years in the hope of achieving a hurnan-like performance m
the field of speech, image recognition and pattern classifi-
cation. These neural networks are composed of many non-
lincar computafional elements operating m parallel. Neural
networks, because of their massive nature, can perform
compitations af a much higher rale. Because of their adap-
tive nature using the leaming process, neural networks can
adapt to changes in the data and leam the characteristics of
input signals.
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Learning in a neura} network means finding an appropri-
ate set of weights that are connection strengths from the
elemenis to the other layer elements, In this study, the back
propagation algorithm of neural networks, which is one of
various learning modes, is used. The squared error ( E,)
and the weighi-change cgnation on the oufput layer are
sitmply given by following relations.”

E, Eg(rpk 0, oy
i, 1.4
il ]
S E—_(T 0 k]
(;VVJ, 2E AW ? ()
= %(TF,\ 0, )fx’(nerp,t )deﬂ inet, )X,
W+ =W, O+ 6d 1, +mAW, (1 -1), (3)

where W, is the weight on the canncction from the 7 th
input element, o is called the leaming-rate parameter, and
f, and & , arc presented as foliows:

W, 4
EETT
5(:.‘( =T, =0, (5)

m is the momentum coefficient thar increases the speed
of convergence for leaming the peural networks. X 15 an
input patiern and £ { ymecans a derivative of sigmoid
transfer function for cach layer. T, is a teaching data and
0, isoutput data of the neural networks.

4.2 Verification of Developed Detection System

According to the seleetion of the above parameters, espe-
clally the learning-rate and the momentum coefficient, the
performance of neuraf networks can vary. Therofore, it is
necessary to optimize the neural network with correct para-
meters. From a preliminary study, the learning-raie and the
momentum coefficient were determined o the values 0.6
and 0.8 respectively. In addition, the number of hidden lay-
ers was selected as two.

13

Fig. 7 Architecture of the used neural network

Trouble detection of the grinding process was conducied
on a personal computer. Figure 7 presents the architecture
of the nemal netwark used in this study. lnput units vsed the
scitling time, the static power, the dynamic power, and the
power variation of acquired signals. Normal, burning, and
chatier vibration states were occupied for output parameters,
which had the interval values from ¢ to 1. In comparison
with these values of oulput parameters, the parameter of
most major value means the state of grindmg operation.
Table 2 presents the values of input parameters and the
teaching data (desired output) based on experimental results.

At the desired output, each pattem has the value of unity
{only one parameter) or zero. For cxample, the nenral net-

Table 2 Learning data used in the neural network

Inpui Parameter Desired Output
Ts Ps P, Pv Nomal Buming Chatter
p-I 33 3Me2 467 213 1 J a
P2 58 3527 485 186 1 0 0
P3 54 304 443 23 1 0 0
P4 54 3742 486 232 1 0 a
P-5 82 3584 634 227 O l 0
P& 04 343 TR 136 0 1 0
P7 118 2621 824 154 0 1 0
P& 67 3868 Ti9 44 0 1 0
P9 75 4728 723 184 ] a 1
P-10 B7 3842 765 627 O 0 {
P11 115 4323 733 9312 0 0 1
P12 112 4284 847 145 0 0 1
P-13 177 4132 T7Re6 118 0 il 1
P14 189 4639 1443 1181 0 D 1
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Fig. 8 Squared error during the learning process

wark is learned that the pattern P-1 listed in Table 2 is nor-
mal, P-5 is burning and P-9 is chaiter vibration state being.

Fig. & Squared error during the learning process.

Figure 8(a) shows the behavior of the squared error dur-
ing the learning process without clustcring the power sig-
nal. As shown i Figure 8(a), a squared error cannot con-
verge on a smaller value. In order to reduce the squared
error, it 18 essential to cluster the range of input parameters.
With the range analysis of acquired signals, clustering the
range of power parameters listed in Table 3 was accom-
plished.

Table 4 shows new learning data based on the clustering.
Figure 8(b) shows squared error during the leaming process
with clustering the power parameters. As shown in Figure,

114

Table 3 Clustering the range of the power parameters

Parameters Low: | Middle : 2 High:3
Ps Below 370 (W) 370-420 (W) Over 420 (W)
Pflu Below 30 (W) 50~80(W)  Over 80{W)
Py Below -20(W)  -20-20(W)  Over 20 (W)
Ts Below 6 (sec)  6-12(sec)  Ower 12 {sec)

Table 4 Learning data bascd on the clustering

Input Parameter Diesired Output
Ts Ps P, Pv Normal Buming Chatter
Pl 1 1 L 1 0 0
P2 1 1 1 2 1 0 0
P3| 2 L 2 L 0 0
P4 2 2 1 L 1 0 0
Pyo2 1 2 i 0 1 0
P& 2 1 2 2 0 1 0
P72 1 3 1 0 1 ]
P& 2 2 2 i 0 I 0
P 2 2 2 2 0 0 i
p-i0 2 2 2 3 0 0 1
P11 2 3 2 3 0 ] 1
P2 2 3 3 A v 0 i
P13 3 2 2 2 0 0 1
P14 3 3 3 3 0 0 1

squared error converges on a small value and therefore
learning process was carried out weil. Recalled resulis that
were obtained through the terative leaming from ihe estab-
lished neural network are listed in Table 5. The output of
the newral network coincides with desired output shown in
Table 4. It means that this systern for grinding trouble
recognition is able to classify the grinding state,

Table & lists implementation resulls for new power data
that were not learned in the previous step. In this case, oul-
put values of the neural network have a few changes com-
pared with Table 4 and 5. Normal parameters shown in
Table 6 have a higher concentration of unity value when
normal the state of grinding operation is maintained, while
others such as burning and chatler vibration parameters
have a lower concentration when burning and chatter vibra-
tior. state is generated. A few erroneous recognitions were
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Tahle 5 Recalled resalis of the detection system

Tnput Parameter Desired Outpui

Ts Ps P, Pv Nomal Buming Chatter
-1 l 1 1 [ 09572 0.0011 00017
P21 ] ! 2 09834 0.0002 00000
P31 2 1 2 09712 00000 00987
p4 12 2 [ 1 09823 00001 000212
P52 1 2 1 00391 09551 00005
P62 1 2 2 00000 09549 0.1723
P72 ] 3 I 00000 09186 00729
P8 2 2 2 100002 (9994 00196
PSS 2 2 2 2 00000 01161 0.8692
p-10 2 2 2 3 00281 00000 05929
P12 3 2 3 00189 0.0000 0.990%
p-12 2 3 3 2 00003 00031 09854
P-13 3 2 3 2 00000 00002 09975
r-i4 3 3 3 3 0.0000 0.0009 1.0000

Table 6 Implementation resulis of the new data

Input Parameier Desired Cuiput

Ts Ps P, Pv Nommal Buming Chatter Results

P15 1L 2 1 1 09774 01754 00000 Normal O
PS5 2 2 3 1 09653 01683 02652 Nowmal Q)
P17 03 1 2 1 0994 00000 00388 MNormal(O
pig 1z 2 1 D000 08608 01496 Burming(
P11 3 2 2 00023 07764 02423 Bummg{)
P20 1 3 3 1 0000 08757 0.1737 Bummg(O)
P2l 13 2 L 00000 04906 06594  Chatter X
P22 02 3 2 2 00005 00025 07932 Chatter()
2302 03 03 3 00000 00283 07999 Chatte O
P24 2 2 3 3 00000 0J570 08487 Chatrer()
P25 3 L 2 3 G178 00005 08712 Chatter D
P26 3 1 3 3 0004 00605 08386 ChatterO
P27 3 2 2 3 00000 00000 08364 Chatter(D

made at the boundary point between burning and chatler
vihration, Nevertheless Jower concentrations and the emo-
neous resulls were encountered, the recognizable perfor-
mance of the established system is very good. Figuie & pre-
senls percentages of success rates accerding fo the varous
layer struciures in the established detection system.
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Fig. 9 Performances of the trouble detection system

From Figure G, it is evident that the maximum perfor-
mance is 95% above when the neural network is opfi-
mized. At all times, performances of trouble recognition are
aboul 90%.

5. Conclusions

Tn order to detect the giindmg trouble involved with the
chatler vibration and workpiece burning, experimentation
on the cylindrical plunge grinder and computer simulation
were carzied out. Based on these results, the conclusions
can be drawn as followings:

(1) Because of the grinding trouble, inlegrity deterioration
of a damaged surface was distinctly verified. With
increasing the number of grinding pieces. the values of
surface roughness were slightly increased in the not-
mal state of grinding, but rapidly increased in trouble
slates. It was seen in order to produce a satisfied prod-
uct that grindmg trouble such as burn and chatier
vibration must be avoided with credible methods.

(2) To forecast the grinding siaies, the parameters af
power signals were determined. Static power
increased gradually in the mactuning process of the
stable state. On the other hand, static power ascended
excessively or decreased when the chatter vibration
snd the workpiece burning were generated respecitve-
ly. Power variation of the stable slate was nearly a
constant but diverged from a rise and a drop with
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chatter vibration and workpiece buming respectively.
As trouble happened, the other parameters increased
also.

{3) From the implementation results of computer simula-
tion for new power data that were not learned, the nor-
mal parameter has a higher concentration of unity,
while others such as burning and chatter vibration
parameters are Jower. A few erroneous recognitions
were made at the boundary point between burning and
chatter vibration. The maximum performance was
95% above when the neural network was oplimized.
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