• Title/Summary/Keyword: Process control logic

Search Result 398, Processing Time 0.033 seconds

Thruster Loop Controller design of Sun Mode and Maneuver Mode for KOMPSAT-2 (ICCAS 2004)

  • Choi, Hong-Taek;Oh, Shi-Hwan;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1392-1395
    • /
    • 2004
  • In order to successfully develop attitude and orbit control subsystem(AOCS), AOCS engineer performs hardware selection, controller design and analysis, control logic and interface verification on electrical test bed, integrated system test, polarity test, and finally verification on orbit after launching. Attitude and orbit control subsystem for KOMPSAT-2 consists of standby mode, sun mode, maneuver mode, science mode, and power safe mode to stabilize and to control the spacecraft for performing the mission. The sun mode is usually divided into sun point submode, earth search submode and safe hold submode. The maneuver mode is divided into attitude hold submode and ${\triangle}$ V submode, while the science mode divided into science coarse submode and science fine submode. Moreover, it is added to back-up mode which uses wheels as an actuator for sun mode and maneuver mode. In this paper, we describe the controller design process and the performance of the design results with respect to the sun mode and the maneuver mode based on thrusters as an actuator using on flexible model.

  • PDF

Development of KOMPSAT-2 Vehicle Dynamic Simulator for Attitude Control Subsystem Functional Verification

  • Suk, Byong-Suk;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1465-1469
    • /
    • 2003
  • In general satellite verification process, the AOCS (Attitude & Orbit Control Subsystem) should be verified through several kinds of verification test which can be divided into two major category like FBT (Fixed Bed Test) and polarity test. And each test performed in different levels such as ETB (Electrical Test Bed) and satellite level. The test method of FBT is to simulate satellite dynamics with sensors and actuators supported by necessary environmental models in ETB level. The VDS (Vehicle Dynamic Simulator) try to make the real situation as possible as the on-board processor will undergo after launch. The purpose of FBT test is to verify that attitude control logic function and hardware interface is designed as expected with closed loop simulation. The VDS is one of major equipments for performing FBT and consists of software and hardware parts. The VDS operates in VME environments with target board, several commercial boards and custom boards based on the VxWorks real time operating system. In order to make time synchronization between VDS and satellite on-board processor, high reliable semaphore was implemented to make synchronization with the interrupt signal from on-board processor. In this paper, the real-time operating environment used on VDS equipment is introduced, and the hardware and software configurations of VDS summarized in the systematic point of view. Also, we try to figure out the operational concept of VDS and AOCS verification test method with close-loop simulation.

  • PDF

Internet Based for Computer Integration Manufacturing System

  • Suesut, T.;Hankarjonsook, C.;Tipsuwanporn, V.;Tammarugwattana, N.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.260-263
    • /
    • 2003
  • This paper has developed the computer integration manufacturing system and Internet based tele-operations. The functions of CIMS include production planing, material requirement planning, work order generation, process control, quality control, shipping planning, warehouse and inventory management and material cost accounting.[1] In this paper focuses on the automatic warehouse control and inventory management by developing the information system as well as the Internet-based integration. The system overview is divided into three parts, the mechanical system, the computer and developed software to control and manage the information and the communication system. The mechanical system consists of the warehouse machine and forklift mobile robot controlled by programmable logic controller (PLC). The computer works on many functions such as control station interfaces with PLC, managing database and inventory, and Internet server to broadcast the inventory database to users via World Wide Web and monitoring the operation on web camera. Our scheme the inventory database can be checked easily anywhere and anytime when the users connect to the Internet. In this article, the lead-time and inventory level can be reduced therefore the holding cost and operating time is also decreased.

  • PDF

Design of LED Driving Circuit using Voltage Controlled Ring Oscillator and Lighting Controller (전압제어 링 발진기를 이용한 LED구동회로 및 조명제어기설계)

  • Kwon, Ki-Soo;Suh, Young-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • An LED driving and control circuit has been developed. The LED driver has a new PWM circuit for current control of LED columns with dimming, current and thermal control, and communication functions. The PWM circuit is composed of two ring oscillator and one counter which can be constructed using basic digital logic components. In addition, it has the functions of remote control mode such as ON, OFF, emergency and power saving modes by the serial communication. The PWM generator and control circuit have been designed and fabricated 0.35[${\mu}m$] Magnachip/Hynix digital IC fabrication process. The LED driving and control board using the developed chip is fabricated and tested successfully.

Design of Bi-directional RDM-DMX512 Converter for LED Lighting Control

  • Hung, Nguyen Manh;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.106-115
    • /
    • 2013
  • LED lighting control system using unidirectional DMX512 (digital multiplex with 512 pieces of information)) protocol has been the most popular. Nowadays, the user's consumption has been upgrading to the more intelligent system but the upgrading process does not affect the existing infrastructure. There were many researches use the additional communication for the feedback communication way such as WiFi, Controller Area Network (CAN), Power Line Communication (PLC), etc but all researches had inherent disadvantages that created the independent feedback with the existing DMX512 system. Our paper represents the novel method that uses the remote device management (RDM) protocol to associate the additional feedback with existent DMX512 infrastructure in the one system. The data in DMX512 frame sending to the DMX512 client is split and repacked to become the RDM packet. This RDM packet is transferred to the RDM monitor console and the response RDM packet is converted to the DMX512 frame for control DMX512 client devices. This is the closed loop control model which uses the bidirectional convertibility between RDM packet and DMX512 frame. The proposed method not only upgrades the feedback control function for the old DMX512 system without changing the existent infrastructure, but also solves compatible problems between new RDM devices and old DMX512 devices and gives the low cost solution for extending DMX512 universe.

Design of Programmable Logic Controller and I/O Expansions

  • Gulpanich, Suphan;Numsomran, Ajin;Roengruen, Prapas;Kongratana, Viriya;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1107-1111
    • /
    • 2005
  • This paper presents a design of Programmable logic Controllers which are well known for a long time that can be applied to be a controller for an automatic machine in industries. However, most of them have been imported from oversea country. This research focuses on the development of PLC by KMITL staff. This PLC system is consists of CPU unit, Digital I/O RTU unit, ANALOG RTU unit. The implementation of the CPU scan time and I/O refresh are principle to PLC. In this article, there are many benefits to industries especially in order to support SME that can use local technology. Therefore, we can apply this research to the manufacturing process in Thailand for the future.

  • PDF

A Development of Fuzzy Logic-Based Evaluation Model for Traffic Accident Risk Level (퍼지 이론을 이용한 교통사고 위험수준 평가모형)

  • 변완희;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.119-136
    • /
    • 1996
  • The evaluation of risk level or possibility of traffic accidents is a fundamental task in reducing the dangers associated with current transportation system. However, due to the lack of data and basic researches for identifying such factors, evaluations so far have been undertaken by only the experts who can use their judgements well in this regard. Here comes the motivation this thesis to evaluate such risk level more or less in an automatic manner. The purpose of this thesis is to test the fuzzy-logic theory in evaluating the risk level of traffic accidents. In modeling the process of expert's logical inference of risk level determination, only the geometric features have been considered for the simplicity of the modeling. They are the visibility of road surface, horizontal alignment, vertical grade, diverging point, and the location of pedestrain crossing. At the same time, among some inference methods, fuzzy composition inference method has been employed as a back-bone inference mechanism. In calibration, the proposed model used four sites' data. After that, using calibrated model, six sites' risk levels have been identified. The results of the six sites' outcomes were quite similar to those of real world other than some errors caused by the enforcement of the model's output. But it seems that this kind of errors can be overcome in the future if some other factors such as driver characteristics, traffic environment, and traffic control conditions have been considered. Futhermore, the application of site's specific time series data would produce better results.

  • PDF

Design and Implementation of Embedded Contactless (Type-B) Protocol Module for RFID (RFID를 위한 내장형 비접촉(Type-B) 프로토콜 지원 모듈 설계 및 구현)

  • Jeon, Yong-Sung;Park, Ji-Mann;Ju, Hong-Il;Jun, Sung-Ik
    • The KIPS Transactions:PartA
    • /
    • v.10A no.3
    • /
    • pp.255-260
    • /
    • 2003
  • In recent, as a typical example of RFID, the contactless IC card is widely used in traffic, access control system and so forth. And its use becomes a general tendency more and more because of the development of RF technology and improvement of requirement for user convenience. This paper describes the hardware module to process embedded contactless protocol for implementation contactless IC card. And the hardware module consists of analog circuits and specific digital logic circuits. This paper also describes more effective design method of contactless IC card, which method separates into analog circuit parts, digital logic circuit part, and software parts according to the role of the design parts.

A Design of Fuzzy-Neural Network Controller of Wheeled-Mobile Robot for Path-Tracking (구륜 이동 로봇의 경로 추적을 위한 퍼지-신경망 제어기 설계)

  • Park Chongkug;Kim Sangwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • A controller of wheeled mobile robot(WMR) based on Lyapunov theory is designed and a Fuzzy-Neural Network algorithm is applied to this system to adjust controller gain. In conventional controller of WMR that adopts fixed controller gain, controller can not pursuit trajectory perfectly when initial condition of system is changed. Moreover, acquisition of optimal value of controller gain due to variation of initial condition is not easy because it can be get through lots of try and error process. To solve such problem, a Fuzzy-Neural Network algorithm is proposed. The Fuzzy logic adjusts gains to act up to position error and position error rate. And, the Neural Network algorithm optimizes gains according to initial position and initial direction. Computer simulation shows that the proposed Fuzzy-Neural Network controller is effective.

Low Leakage Input Vector Searching Techniques for Sequential Circuits (시퀀셜 회로를 위한 리키지 최소화 입력 검색방법)

  • Lee, Sung-Chul;Shin, Hyun-Chul;Kim, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.655-658
    • /
    • 2005
  • Due to reduced device sizes and threshold voltages, leakage current becomes an important issue in CMOS design. In a CMOS combinational logic circuit, the leakage current in the standby state depends on the state of the inputs and thus can be minimized by applying an optimal input when the circuit is idling. In this paper, we present a New Input Vector Control algorithm, called Leakage Minimization by Input vector Control (LMIC) for minimal leakage power. This algorithm finds the minimal leakage vector and reduces leakage current up to 22.% on the average, for TSMC 0.18um process parameters. Minimal leakage vectors are very useful in reducing leakage currents in standby mode of operation.

  • PDF