Yu, Ji Min;Kim, Yong Tak;Yi, Kwon Jung;Kim, Dong-Woon;Kim, Soo-Ki;Moon, Hyung In
Korean Journal of Veterinary Service
/
v.40
no.4
/
pp.259-264
/
2017
In this study, the changes of low molecular weight compounds during natural decay process for 4 weeks were analyzed. Natural corruptions were observed in the slate warehouse with summer humidity and temperature throughout the rainy season by using commercially available compound feeds. Koiganal was detected from 14 days of natural decay and corruption with chicken, pig, and Korean cattle feed. Ethyl palmitate, Ethyl pentadecanoate and, Methyl elaidatel were detected from chicken, pig, and Korean cattle feed. So, Koiganal can be useful for monitoring the degree of pollution of corruption of livestock feeds in advance.
Korean Journal of Computational Design and Engineering
/
v.13
no.2
/
pp.89-97
/
2008
Today's manufacturing environment is becoming a distributed manufacturing process in which a unique and specialized technological background is required in specific domains rather than having a single company execute all the manufacturing processes. This phenomenon is especially true in the automotive industry, where the sharing of product data between companies is rampant; however, this kind of interoperability causes many problems. When each company has its own method of managing product data, the sharing of product data in a distributed environment is a major problem. A data translator module or a data mapping module had to be developed for the exchange of data in heterogeneous systems of product data management (PDM); moreover, this type of module must be continually changed and improved due to the fact that PDM systems change for many reasons. In addition, the growth in corporate partnerships deepens the burden of developing and maintaining this module and creates further data exchange problems due to the increasing complexity of the system. This paper introduces a way of exchanging product data among heterogeneous PDM systems through the use of OpenPDM, which is a kind of virtual data warehouse. The implementation of a PDM integrating system is also discussed with respect to the requirement for a logical integration of product data which are physically distributed.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.182-183
/
2018
Big data analysis is the process of discovering a meaningful correlation, pattern, and trends in large data set stored in existing data warehouse management tools and creating new values. In addition, by extracts new value from structured and unstructured data set in big volume means a technology to analyze the results. Most of the methods of Big data analysis technology are data mining, machine learning, natural language processing, pattern recognition, etc. used in existing statistical computer science. Global research institutes have identified Big data as the most notable new technology since 2011.
Journal of the Korea Society of Computer and Information
/
v.15
no.8
/
pp.1-11
/
2010
Many applications of DSMS(Data Stream Management System) require not only to process real-time stream data efficiently but also to provide high quality services such as data mining and data warehouse combining with DBMS(Database Management System) to users. In this paper we execute the performance benchmark of the combined system of DSMS and DBMS that is developed for high quality services. We use the stream data of network monitoring application system and combine the traditional representative DSMSs and DBMSs in a single system for the performance testing. We develop the total performance benchmark tool implementing JAVA language for the our testing. For our performance testing, we combine DSMS such as STREAM and Coral8 and DBMS such MySQL and Oracle10g respectively.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.11
/
pp.2677-2682
/
2015
Smart factory has the function of integrated management of production process management, logistics management as a intelligent factory, it is also emerging as the core of new industry which converges ICT and manufacturing business. We suggested Smart factory logistics management system which embedded position tracking technology and the system converges ICT and IoT. This suggested system can manage all the processes from production to release by tracking route and position based on signal strength of bluetooth 4.0 beacon tag. For the more, we will expect to apply to the various type of factory environments like detachable installation, optimized management using sensor.
Proceedings of the Korea Information Processing Society Conference
/
2000.04a
/
pp.7-9
/
2000
데이터 웨어하우스는 기업의 의사 결정 과정을 향상시킬 수 있게 하는 정보기술이다. 대표적인 정의로는 '기업의 의사결정 과정을 지원하기 위한 주제 중심적이고 통합적이며 시간성을 가지는 비휘발성 자료의 집합 '이다.[1] 즉, 기업들이 보유하고 있는 분산된 대량의 데이터를 추출, 변환, 통합하여 요약된 읽기 전용의 데이터베이스로 구축함으로써, 경영분석이나 기업내의 의사 결정 지원 자료로 주로 활용된다. 데이터 웨어하우스의 경우, 일반사용자는 웨어하우스내에 저장된 데이터를 직접 이용하는 경우가 대부분이다. 따라서, 데이터의 구조와 의미에 대한 일반 사용자의 이해가 필요하게 되었다. 즉, 데이터의 추출 및 정제규칙, 데이터의 통합규칙, 요약알고리즘, 데이터 처리스케쥴 등을 알아야만 한다. 메타데이터는 최소한의 데이터 구조, 데이터의 요약에 사용된 알고리즘, 운영 데이터베이스와 데이터 웨어하우스사이의 대응관계와 같은 정보를 포함하여야 한다.[3] 여기서 변환프로세스에 대한 정보를 데이터의 형식에 대한 정보와 일반적인 데이터들과 차별화하여 메타프로세스라 한다.[5] 메타프로세스는 데이터를 변환하여 데이터 웨어하우스에 적재하는 과정에서 생성되는 메타데이터의 일부로써 데이터 웨어하우스에 통합된 자료들이 어떤 변환과정을 거쳐 생성된 자료인지를 알려주는 변환프로세스에 관한 정보를 제공한다. 본 연구에서는 대부분의 데이터 웨어하우스에서 구현되고 있는 메타데이터들은 데이터 항목의 속성정보를 위주로 한 것이며, 변환 프로세스와 관련된 데이터 관리가 미약하다. 따라서, 데이터 웨어하우스의 메타데이터 중 메타프로세스 정보의 추출 및 관리 시스템을 제안하는 것이다.
International Journal of Advanced Culture Technology
/
v.9
no.3
/
pp.321-326
/
2021
In a multi-cloud environment, it is necessary to minimize physical movement for efficient interoperability of distributed source data without building a data warehouse or data lake. And there is a need for a data platform that can easily access data anywhere in a multi-cloud environment. In this paper, we propose a new platform based on data fabric centered on a distributed platform suitable for cloud environments that overcomes the limitations of legacy systems. This platform applies the knowledge graph database technique to the physical linkage of source data for interoperability of distributed data. And by integrating all data into one scalable platform in a multi-cloud environment, it uses the holochain technique so that companies can easily access and move data with security and authority guaranteed regardless of where the data is stored. The knowledge graph database mitigates the problem of heterogeneous conflicts of data interoperability in a decentralized environment, and Holochain accelerates the memory and security processing process on traditional blockchains. In this way, data access and sharing of more distributed data interoperability becomes flexible, and metadata matching flexibility is effectively handled.
Tae-Hyun Bae;Ryul-Hee Kim;Kyu-Yeol Song;Dong-Eun Lee
International conference on construction engineering and project management
/
2009.05a
/
pp.393-399
/
2009
This paper introduces an automated tool named Advanced Stochastic Schedule Simulation System (AS4). The system automatically integrates CPM schedule data exported from Primavera Project Planner (P3) and historical activity duration data obtained from a project data warehouse, computes the best fit probability distribution functions (PDFs) of historical activity durations, assigns the PDFs identified to respective activities, computes the optimum number of simulation runs, simulates the schedule network for the optimum number of simulation runs, and estimates the best fit PDF of project completion times (PCTs). AS4 improves the reliability of simulation-based scheduling by effectively dealing with the uncertainties of the activities' durations, increases the usability of the schedule data obtained from commercial CPM software, and effectively handles the variability of the PCTs by finding the best fit PDF of PCTs. It is designed as an easy-to-use computer tool programmed in MATLAB. AS4 encourages the use of simulation-based scheduling because it is simple to use, it simplifies the tedious and burdensome process involved in finding the PDFs of the many activities' durations and in assigning the PDFs to the many activities of a new network under modeling, and it does away with the normality assumptions used by most simulation-based scheduling systems in modeling PCTs.
Eui-Jung Jung;Sung Ho Park;Kwang Woo Jeon;Hyunseok Shin;Yunyong Choi
The Journal of Korea Robotics Society
/
v.18
no.1
/
pp.93-98
/
2023
In this paper, the development of an autonomous electric vehicle for logistics with a robotic arm is introduced. The manual driving electric vehicle was converted into an electric vehicle platform capable of autonomous driving. For autonomous driving, an encoder is installed on the driving wheels, and an electronic power steering system is applied for automatic steering. The electric vehicle is equipped with a lidar sensor, a depth camera, and an ultrasonic sensor to recognize the surrounding environment, create a map, and recognize the vehicle location. The odometry was calculated using the bicycle motion model, and the map was created using the SLAM algorithm. To estimate the location of the platform based on the generated map, AMCL algorithm using Lidar was applied. A user interface was developed to create and modify a waypoint in order to move a predetermined place according to the logistics process. An A-star-based global path was generated to move to the destination, and a DWA-based local path was generated to trace the global path. The autonomous electric vehicle developed in this paper was tested and its utility was verified in a warehouse.
Kim, Sam-Keun;Kim, Kwang-Chae;Kim, Hyeon-Woo;Jeong, Woo-Jin;Ahn, Jae-Geun
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.527-535
/
2021
Traditional business intelligence (BI) systems have been used widely as tools for better decision-making on time. On the other hand, building a data warehouse (DW) for the efficient analysis of rapidly growing data is time-consuming and complex. In particular, the ETL (Extract, Transform, and Load) process required to build a data warehouse has become much more complex as the BI platform moves to a cloud environment. Various BI solutions based on the NoSQL database, such as MongoDB, have been proposed to overcome these ETL issues. Decision-makers want easy access to data without the help of IT departments or BI experts. Recently, self-service BI (SSBI) has emerged as a way to solve these BI issues. This paper proposes a self-service BI system with farming data using the MongoDB cloud as DW to support the selection of new crops by return-farmers. The proposed system includes functions to provide insights to decision-makers, including data visualization using MongoDB charts, reporting for advanced data search, and monitoring for real-time data analysis. Decision makers can access data directly in various ways and can analyze data in a self-service method using the functions of the proposed system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.