• 제목/요약/키워드: Process Optimize

검색결과 1,213건 처리시간 0.032초

연삭가동용 Inprocess 표면조도 예측모델의 평가 (Evaluation of Pre-estimation Model to the Inprocess Surface Roughness for Grinding Operations)

  • 김건희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.11-18
    • /
    • 1998
  • In grinding operations, one of the most important problems is to increase efficiency of process. In order to achive this purpose, it is necessary to administer the tool life of grinding wheel and to optimize grinding conditions. Frequently dressing result in lowering the process efficiency remarkably and makes production cost high. On the other hand, grinding with a worn wheel causes the workpiece surface roughness to increase and often results in the occurrence of such troubles as chatter vibration and burning.

  • PDF

자기 평면 도파관 소자의 최적형상설 (Shape Optimization of Waveguide Tee Junction in H-plane)

  • 이홍배;한송엽;천창열
    • 대한전기학회논문지
    • /
    • 제43권6호
    • /
    • pp.1020-1026
    • /
    • 1994
  • This paper presents a technique to optimize the shape of waveguide components in H-plane. The technique utilizes the numerical optimization process which employs the vector finite element method. In the optimization process, the sensitivity of an objective function with respect to design variables is computed by introducting adjoint variables, which makes the computation easy. The steepest descent method is then employed to update design variables. As a numerical example, an H-plane waveguide teejunction was considered to obtain optimized shape. Comparison between the initial and optimized shape was made.

1 um 미만의 나노트렌치 게이트 구조를 갖는 1,200 V 고효율 트렌치 게이트 필드스톱 IGBT 설계에 관한 연구 (Design of 1,200 V Class High Efficiency Trench Gate Field Stop IGBT with Nano Trench Gate Structure)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.208-211
    • /
    • 2018
  • This paper details the design of a 1,200 V class trench gate field stop IGBT (insulated gate bipolar transistor) with a nano gate structure smaller than 1 um. Decreasing the size is important for lowering the cost and increasing the efficiency of power devices because they are high-voltage switching devices, unlike memory devices. Therefore, in this paper, we used a 2-D device and process simulations to maintain a gate width of less than 1 um, and carried out experiments to determine design and process parameters to optimize the core electrical characteristics, such as breakdown voltage and on-state voltage drop. As a result of these experiments, we obtained a wafer resistivity of $45{\Omega}{\cdot}cm$, a drift layer depth of more than 180 um, an N+ buffer resistivity of 0.08, and an N+ buffer thickness of 0.5 um, which are important for maintaining 1,200 V class IGBTs. Specially, it is more important to optimize the resistivity of the wafer than the depth of the drift layer to maintain a high breakdown voltage for these devices.

유전알고리즘을 이용한 인버터 DC 저항점용접에서의 정전류퍼지제어기 최적화 (Optimization of Fuzzy Controller for Constant Current of Inverter DC Resistance Spot Welding Using Genetic Algorithm)

  • 유지영;윤상만;이세헌
    • Journal of Welding and Joining
    • /
    • 제28권5호
    • /
    • pp.99-105
    • /
    • 2010
  • Inverter DC resistance spot welding process has been very widely used for joining such as automotive body sheet metal. Because the lobe area of DC welding is larger than AC welding and DC welding has low electrode wear. So the use of Inverter DC resistance spot welding process has been further increased. And the application of high tensile steel is growing for light weight vehicle. To improve the weldability of high strength steel, the development of Inverter DC resistance spot welding system is more conducted. However, Inverter DC resistance spot welding system has a few problems. Current waveform is unstable and the expulsion has been occurred by characteristics of steel. In this study, inverter DC resistance spot welding system was made. And Fuzzy control algorithm was applied for constant current. The genetic algorithm was applied to optimize the fuzzy scaling factors, in order to optimize the fuzzy control.

유한요소해석을 통한 전기 커넥터의 압착 품질 향상 (Quality Improvement for Crimping Process of Electrical Connector Using FEM Analysis)

  • 윤철호;박진기;최현순;김영석
    • 소성∙가공
    • /
    • 제18권3호
    • /
    • pp.229-235
    • /
    • 2009
  • This paper covers finite element simulations to evaluate the terminal crimping process of automobile electrical connector. Crimping is a classical technology process to ensure the electrical and the mechanical link between a wire and a terminal. Numerical modeling of the process is helpful to choose and to optimize the dimensions of the crimping part of the connector. In this paper, we discuss a 2D simulation of the crimping process, using explicit finite element methods (ABAQUS/Explicit) and we compare the results with experimental data from the industrial process of crimping (crimping height, crimping width and compressibility). The explicit method is preferred for the modeling of multi-contact problems, in spite of the quasi-static process of crimping. As compared with CAE analysis, a performance improvement makes certain of the truth of the matter.

미세 패턴의 디버링을 위한 전해-자기연마 복합가공의 적용과 공정 최적화에 관한 연구 (Application and Parameter Optimization of EP-MAP Hybrid Machining for Micro Pattern Deburring)

  • 이성호;곽재섭
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.114-120
    • /
    • 2013
  • An EP(Electrolytic Polishing)-MAP(Magnetic Abrasive Polishing) hybrid process was applied to remove burr on the micro pattern. Micro pattern fabrication processes are combined with micro milling and EP-MAP hybrid process for deburring. Depending on the micro milling conditions which are applied, micro burrs are formed around the side and top of the pattern. The EP-MAP deburring is used to remove these burrs effectively. To optimize removal rate and form error in the EP-MAP hybrid process, a design of experiment was performed. The effect of deburring process and form error of micro pattern are evaluated via SEM images and the results of AFM.

실험계획법을 적용한 라이너 단조 공정의 유한요소해석 (DOE approach in the FE Simulation of Liner Forging Process)

  • 김용관;강경필;서승재;이재근;윤태식;이경훈
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.356-362
    • /
    • 2018
  • A liner is a crucial component that directly affects the penetration performance of the shaped charge warhead. If the material of the liner has fine grain size and high strength, then the penetration performance can be further improved. There have been attempts to use a preform obtained by a severe plastic deformation (SPD) process. In this study, the process of minimizing the strain deviation to maintain the characteristics of material obtained by the severe plastic deformation process was investigated. The FE analysis of liner forging process was performed using the design of experiments (DOE), to optimize various shape parameters of the forming process such as shape of preform and forging die. As a result, the combination of design variables with the minimum effective strain deviation in the liner forging process were obtained.

다성분 공정을 위한 데이터 보정 (Data reconciliation for multicomposition processes)

  • 이무호;한종훈;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.36-39
    • /
    • 1996
  • In chemical processes, measurement errors reduce the credibility of information and cause inconsistency in material and energy balances. Because multicomposition flows and temperature measurements make material and energy balances nonlinear equations, data reconciliation becomes a nonlinear constrained optimization problem. In multicomposition processes, if we follow general optimization procedure, the number of measurement variables is so large that data reconciliation requires much computation time. We propose the decomposition procedure to reduce the computation time without the decrease of accuracy of data reconciliation. Decomposition procedure finds global variables, that can reduce the nonlinearity of constraints, and divides two sub-optimization problems. Once we optimize the global variables at upper level, we can easily optimize the remain variables at tower level, We can obtain the short computational time and the same accuracy as SQP optimization method.

  • PDF

반도체 제조 트랙장비의 온라인 스케줄링 방법 (On-Line Scheduling Method for Track Systems in Semiconductor Fabrication)

  • 윤현중;이두용
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.443-451
    • /
    • 2001
  • This paper addresses an on-line scheduling method for track systems in semiconductor fabrication. A track system is a clustered equipment performing photolithography process in semiconductor fabrication. Trends toward high automation and flexibility in the track systems accelerate the necessity of the intelligent controller that can guarantee reliability and optimize productivity of the track systems. This paper proposes an-efficient on-line scheduling method that can avoid deadlock inherent to track systems and optimize the productivity. We employ two procedures for the on-line scheduling. First, we define potential deadlock set to apply deadlock avoidance policy efficiently. After introducing the potential deadlock set, we propose a deadlock avoidance policy using an on-line Gantt chart, which can generate optimal near-optimal schedule without deadlock. The proposed on-line scheduling method is shown to be efficient in handling deadlock inherent to the track systems through simulation.

PAM-STAMP Inverse 모듈을 이용한 Brace Center Pillar Blanking 사이즈 최적화에 관한 연구 (A study on optimized Blanking size of Brace Center Pillar using Inverse module in PAM-STAMP)

  • 유상렬;김태호;박재덕;김민주;장성규;전언찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.349-350
    • /
    • 2006
  • PAM-STAMP is a widely used program which deals with press forming analysis. A blanking used in the press process depends on the experience of the workers. Thus it causes some waste material and demands a lot of time and many costs at the manufacturing mold. So we need to optimize of the blanking size. We have studied the optimal blanking size of the Brace Center Pillar using an Inverse module in PAM-STAMP

  • PDF