Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.4.208

Design of 1,200 V Class High Efficiency Trench Gate Field Stop IGBT with Nano Trench Gate Structure  

Kang, Ey Goo (Department of Energy IT Engineering, Far East University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.4, 2018 , pp. 208-211 More about this Journal
Abstract
This paper details the design of a 1,200 V class trench gate field stop IGBT (insulated gate bipolar transistor) with a nano gate structure smaller than 1 um. Decreasing the size is important for lowering the cost and increasing the efficiency of power devices because they are high-voltage switching devices, unlike memory devices. Therefore, in this paper, we used a 2-D device and process simulations to maintain a gate width of less than 1 um, and carried out experiments to determine design and process parameters to optimize the core electrical characteristics, such as breakdown voltage and on-state voltage drop. As a result of these experiments, we obtained a wafer resistivity of $45{\Omega}{\cdot}cm$, a drift layer depth of more than 180 um, an N+ buffer resistivity of 0.08, and an N+ buffer thickness of 0.5 um, which are important for maintaining 1,200 V class IGBTs. Specially, it is more important to optimize the resistivity of the wafer than the depth of the drift layer to maintain a high breakdown voltage for these devices.
Keywords
Nano gate structure; Power devices; Breakdown voltage; On-state voltage drop;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. G. Kang, D. S. Oh, D. W. Kim, D. J. Kim, and M. Y. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 15, 758 (2002). [DOI: https://doi.org/10.4313/JKEM.2002.15.9.758]
2 J. I. Lee, S. M. Yang, Y. S. Bae, and M. Y. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 23, 190 (2010). [DOI: https://doi.org/10.4313/JKEM.2010.23.3.190]
3 T. Laska, M. Munzer, F. Pfirsch, C. Schaeffer, and T. Schmidt, Proc. 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH 37094) (IEEE, Toulouse, France, 2000) p. 355.
4 B. S. Ahn, H. S. Chung, E. S. Jung, S. J. Kim, and E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 187 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.3.187]
5 J. S. Lee, E. G. Kang, and M. Y. Sung, Microelectron. J., 39, 57 (2008). [DOI: https://doi.org/10.1016/j.mejo.2007.10.023]   DOI
6 Y. S. Hong, E. S. Jung, and E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 276 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.4.276]