• Title/Summary/Keyword: Process Chamber

Search Result 987, Processing Time 0.032 seconds

Study on the Evaporation Behaviour of Electrolytic Manganese Melt Under Reduced Pressure (감압 하에서 전해 망간 용탕의 증발거동에 관한 연구)

  • Hong, Seong-Hun;Jeon, Byoung-Hyuk;Wi, Chang-Hyun;Shin, Dong-Yub;You, Byung-Don;Seo, Seong-Mo;Park, Jong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.828-833
    • /
    • 2009
  • As a fundamental study in the development of a distillation process for ferromanganese alloy melts, the evaporation behavior of an electrolytic manganese melt under reduced pressure was investigated. The melt temperature, vacuum degree, surface area of the melt, and reaction time were considered as experimental variables. The amount of vaporized manganese increases linearly as the reaction time increases, and the evaporation of manganese was promoted by increasing the temperature and surface area of the melt. In the pressure range below the equilibrium vapor pressure of manganese, the amount of vaporized manganese per unit surface area of the melt increased sharply with a decrease of the pressure in the reaction chamber. An empirical equation for the evaporation rate of manganese was derived by regression analysis. The evaporation coefficient of manganese was determined to be approximately $3.84{\times}10^{-3}(g{\cdot}K^{1/2})/(Pa{\cdot}cm^2{\cdot}min)$ under the investigated conditions.

Hydrogen Jet Structure and Measurement of Local Equivalence Ratio by LIBs under the Different Injection Pressure (분사 압력에 따른 수소 제트의 형상과 LIBs를 적용한 국부 당량비 계측)

  • Lee, Sanguk;Kim, Jungho Justin;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.84-93
    • /
    • 2022
  • To implement carbon-neutrality in transportation sectors until 2050, hydrogen is considered a promising fuel for internal combustion engines because hydrogen does not contain carbon itself. Although hydrogen does not emit CO2 emission from its combustion process, the low energy density in a volume unit hinders the adoption of hydrogen. Therefore, the understanding of hydrogen jet behavior and measurement of equivalence ratio must be conducted to completely implement the high-pressure hydrogen direct injection. The main objective of this research is feasibility test of hydrogen local equivalence ratio measurement by laser-induced breakdown spectroscopy (LIBs). To visualize the macroscopic structure of hydrogen jet, high-speed schlieren imaging was conducted. Moreover, LIBs has been adopted to validate the feasibility of hydrogen local equivalence ratio measurement. The hydrogen injection pressure was varied from 4 MPa to 8 MPa and injected in a constant volume chamber where the ambient pressure was 0.5 MPa. The increased injection pressure extends the vertical penetration of hydrogen jet. Due to the higher momentum supply when the injection pressure is high, the hydrogen has easily diffused in all directions. As the laser trigger timing has delayed, the low hydrogen atomic emission was detected due to the longer mixture formation time. Based on equivalence ratio measurement results, LIBs could be applied as a methodology for hydrogen local equivalence ratio measurement.

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

Adsorption Properties of Paint Mixed with Powdered Activated Carbon According to the Number of Coatings (분말활성탄을 혼합한 도료의 도장횟수에 따른 흡착 특성)

  • Choi, Byung-Cheol;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.25-26
    • /
    • 2021
  • Due to COVID-19, the spread of non-face-to-face culture is increasing the time spent indoors. Accordingly, it is necessary to reduce indoor air pollutants. Also, among building materials, there are paints. As the number of coatings increases, the coating film becomes thick, and there is a risk of cracking and falling off. Therefore, this study is to examine the adsorption properties of indoor air pollutants according to the number of coatings of a paint mixed with powdered activated carbon. In the experimental plan, the addition ratio of powdered activated carbon was selected as 30%, and the number of coatings was selected as primcoating, second coat, and finishing coat, and the concentration of formaldehyde and volatile organic compounds were measured. As a result, as the number of coatings increased, the concentration of formaldehyde and volatile organic compounds tended to decrease. This is considered to be due to the fact that not only the physical adsorption acted by the internal pores of the powdered activated carbon, but also because a lot of powdered activated carbon was present on the painted surface as the coating film was formed. However, since it is judged that there is an error in the concentration due to the inflow of external air as the chamber cover is opened to put the test object in the adsorption test process, it is considered that the experimental method needs to be supplemented.

  • PDF

Space Planet Exploration Rover Climbing Test Site Design (우주 행성 탐사 로버 등판 시험장 설계)

  • Byung-Hyun Ryu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • Space exploration is at the forefront of human scientific endeavors, and planetary exploration rovers play a critical role in studying planetary surfaces. Rover performance is especially vital for safely navigating steep terrain and delicate landscapes found on planets like Mars and the Moon. This paper offers a comprehensive overview of a landing testbed designed to simulate challenging extraterrestrial terrain and loose regolith. The paper briefly outlines lunar crater region topographical features and highlights the importance of these simulations in rover testing. It then explores previous landing testbed developments and describes the design process for a landing testbed to be installed in the dirty thermal vacuum chamber at the Korea Institute of Civil Engineering and Building Technology. Once realized, this proposed landing testbed will enable precise evaluations of rover mobility and exploration capabilities under lunar-like conditions, including high vacuum and extreme temperatures.

Permeability of the Lateral Air Flow through Unstructured Pillar-like Nanostructures (비정형 기둥 형상을 가진 나노구조에서의 가스 투과성 실험 연구)

  • Hyewon Kim;Hyewon Lim;Jeong Woo Park;Sangmin Lee;Hyungmo Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.197-202
    • /
    • 2023
  • Recently, research on experimental and analytical techniques utilizing microfluidic devices has been pursued. For example, lab-on-a-chip devices that integrate micro-devices onto a single chip for processing small sample quantities have gained significant attention. However, during sample preparation, unnecessary gases can be introduced into the internal channels, thus, impeding device flow and compromising specific function efficiency, including that of analysis and separation. Several methods have been proposed to mitigate this issue, however, many involve cumbersome procedures or suffer from complexities owing to intricate structures. Recently, some approaches have been introduced that utilize hydrophobic device structures to remove gases within channels. In such cases, the permeability of gases passing through the structure becomes a crucial performance factor. In this study, a method involving the deposition and sintering of diluted Ag-ink onto a silicon wafer surface is presented. This is followed by unstructured nano-pattern creation using a Metal Assisted Chemical Etching (MACE) process, which yields a nanostructured surface with unstructured pillar shapes. Subsequently, gas permeability in the spaces formed by these surface structures is investigated. This is achieved by experiments conducted to incorporate a pressure chamber and measure gas permeability. Trends are subsequently analyzed by comparing the results with existing theories. Finally, it can be confirmed that the significance of this study primarily lies in its capability to effectively evaluate gas permeability through unstructured pillar-like nanostructures, thus, providing quantitative values for the appropriate driving pressure and expected gas removal time in practical device operation.

Deep learning-based approach to improve the accuracy of time difference of arrival - based sound source localization (도달시간차 기반의 음원 위치 추정법의 정확도 향상을 위한 딥러닝 적용 연구)

  • Iljoo Jeong;Hyunsuk Huh;In-Jee Jung;Seungchul Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.178-183
    • /
    • 2024
  • This study introduces an enhanced sound source localization technique, bolstered by a data-driven deep learning approach, to improve the precision and accuracy of direction of arrival estimation. Focused on refining Time Difference Of Arrival (TDOA) based sound source localization, the research hinges on accurately estimating TDOA from cross-correlation functions. Accurately estimating the TDOA still remains a limitation in this research field because the measured value from actual microphones are mixed with a lot of noise. Additionally, the digitization process of acoustic signals introduces quantization errors, associated with the sampling frequency of the measurement system, that limit the precision of TDOA estimation. A deep learning-based approach is designed to overcome these limitations in TDOA accuracy and precision. To validate the method, we conduct comprehensive evaluations using both two and three-microphone array configurations. Moreover, the feasibility and real-world applicability of the suggested method are further substantiated through experiments conducted in an anechoic chamber.

Development of the calibration procedure of the reference sound source and case study on the uncertainty evaluation (기준음원의 교정 절차 개발 및 불확도 평가 사례)

  • Jae-Gap Suh;Wan-Ho Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.344-350
    • /
    • 2024
  • A Reference Sound Source (RSS) is an important standard device employed in measuring sound power. The specifications of RSS is specified in international standards, and it is classified as a major calibration item in the field of acoustic metrology. Since the output power of RSS is affected by the supply voltage, each country needs to secure its own calibration service system. In this study, a procedure for calibrating a RSS is established based on the reverberant room conditions and uncertainty evaluation is conducted. Basically, the calibration procedure can apply a precision measurement process of acoustic power, and here, the measurement method using the reverberation chamber of ISO 3741 is applied. For this purpose, a measurement system is constructed, measurements are conducted with two types of RSS, and measurement uncertainty is evaluated. Through measurement examples, it is confirmed that the non-uniformity of the sound pressure distribution in the reverberation room and the volume measurement uncertainty contributed significantly to the overall uncertainty. Additionally, the influence of input voltage is experimentally examined to examine the uncertainty contribution that can be reflected in acoustic power measurements.

Characteristics of CaCO3 Sorbent Particles for the In-furnace Desulfurization (로 내 탈황을 위한 CaCO3 흡착제 입자의 분위기 기체와 체류 시간의 변화에 따른 특성)

  • Lee, Kang-Soo;Jung, Jae-Hee;Keel, Sang-In;Lee, Hyung-Keun;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • The in-furnace desulfurization technique is applied to the $O_2/CO_2$ combustion system for the carbon capture and storage (CCS) process because this combustion system does not need an additional chamber for the desulfurization. $CaCO_3$ sorbent particles, which have a wide range in size from a few nanometers to several tens of micrometers, are used for this process. In this study, an experimental system which can simulate the $O_2/CO_2$ combustion system was developed. $CaCO_3$ sorbent particles were exposed to the high temperature reactor at $1200^{\circ}C$ with various residence times (0.33-1.46 s) in air and $CO_2$ atmospheric conditions, respectively. The sorbent particles were then sampled at the inlet and outlet of the reactor and analyzed qualitatively/quantitatively using SMPS, XRD, TGA, and SEM. The results showed that the residence time and atmospheric condition in a high temperature reactor can affect the characteristics of the $CaCO_3$ sorbent particles used in the in-furnace desulfurization technique, such as the calcination rate and reaction mechanism.

Enhancement of Coagulation and Flocculation Efficiencies by Ultrasonic Chemical Spray Nozzle I (초음파 약품분사노즐을 이용한 응집효율 향상 I)

  • Kim, Jin-Kook;Cho, Soon-Haing;Ha, Dong-Yun;Koh, Jae-Seok;Kim, Yong-Hyun;Choi, Seung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • To establish low-cost and high efficiency water treatment process, feasibility of applying ultrasonic spray nozzle for chemical injection was evaluated. Ultrasonic spray nozzle was manufactured using piezoelectric ceramics. Treatment efficiencies of contaminants by ultrasonic spray nozzle were compared with conventional chemical mixing such as back-mixing. It was found out that the rate of chemical diffusion rate by ultrasonic spray nozzle was faster than by back-mixing method. Removal efficiencies of various contaminants, such as turbidity, organics and microorganism by ultrasonic spray nozzle were also higher than by back-mixing method. By adapting ultrasonic spray nozzle in coagulant injection process, it can be prevented that the decline of treatment efficiency by coagulant overdose. The amount of coagulant can be reduced by applying ultrasonic spray nozzle in water treatment. Along with these advantages chemical mixing chamber is not required if ultrasonic spray nozzle is adapted. From these results, it can be concluded that chemical injection by ultrasonic spray nozzle is an economical and highly efficient device for coagulant mixing.