• 제목/요약/키워드: Process Chamber

검색결과 987건 처리시간 0.033초

다층 박막 스퍼터링 장비의 제어시스템에 관한 연구 (A Study on Control System of Multi Layer Sputtering Equipment)

  • 이선종;유흥렬;손영득
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.302-308
    • /
    • 2018
  • 다층 박막 스퍼터링(Multi-Layer Sputtering)은 상이한 물질을 원하는 두께의 박막을 다층(Multi-Layer) 으로 형성함을 목적으로 한다. 다층 박막 증착 공정은 공정 시간이 비교적 많은 비중을 차지하는데, 그 주요 원인은 공정 시간에 비해 증착하고자하는 기판의 이동 시간과 챔버를 고진공 상태로 만드는 시간이 많이 소요되기 때문이다. 반도체나 디스플레이 산업은 하나의 챔버에서 단일 물질을 스퍼터링하고 기판이 다관절 로봇을 통해 다른 챔버로 이동하여 다른 물질을 스퍼터링하는 공정이 대부분인데, 이는 필연적으로 공정 설비 내에 여러 개의 챔버와 진공펌프, 다관절 로봇이 필요하다. 이러한 문제점을 해결하기 위해 본 논문에서는 단일 진공 챔버 내에서 서로 상이한 물질을 증착하는 다층박막 스퍼터링 장치에 대한 제어시스템을 제안하고 TFT 공정에서 적용한다. 제어시스템의 제작과 실험을 통해 유효성을 입증한다.

대형 잔향실의 방진 구조 설계 및 검증시험 (Design and Verification of a Large Reverberation Chamber's Isolation System)

  • 김홍배;이득웅
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1066-1074
    • /
    • 2004
  • A vibration isolation system for a large reverberation chamber (1,228 $m^3$ and 1,000 ton) has been installed and verified. The reverberation chamber generates loud noise and induces high level of vibration while performing spacecraft acoustic reliability tests. The isolation system prevents vibration transfer from the chamber to the enclosure buildings. This paper describes design process and commissioning experiments of the system. Design criteria have been derived from rigid body model of the chamber. The stiffness of neoprene pads has been selected by employing finite element analysis of the reverberant chamber and isolation system. A total of 21 neoprene pads have been installed between the chamber and supporting Pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. While 136.9 dB noise is generated in the chamber, absolute transmissibility of the isolation system has been measured. The measured natural frequency of the chamber is 10.2Hz, which is 80% of the predicted value. Overall transmissibility at working frequency range (25∼10.000 Hz) is less than -12.4 dB.

가변 원형 베일러의 결속 기구 제어 장치 개발 (Development of a Tying-Unit Controller for a Variable Chamber Round Baler)

  • 김종언;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.341-350
    • /
    • 2000
  • This study was conducted to develop a control unit for a tying device of a variable chamber round baler. The work process of the tying device was thoroughly analyzed and the control sequence was established according to the work process. Based on this control sequence, a control unit using an 8 bit microprocessor AT 89C52 as a CPU was developed. The driving circuit to control the actuator motion was developed and the PWM method was used to regulate the velocity of the actuator. On the front panel of the control unit, indicators were also installed to show the operations being conducted. A prototype of the developed control unit was manufactured and tested. A total of 50 complete cycles of the control sequence was repeated and no failure was observed. It was evaluated that the developed control unit has an excellent performance and can be used practically for variable chamber round balers.

  • PDF

An Analysis of Attenuation Effect of Pressure Head Using an Air Chamber

  • Lee, Jae-Soo;Yoon, Yong-Nam;Kim, Joong-Hoon
    • Korean Journal of Hydrosciences
    • /
    • 제7권
    • /
    • pp.77-86
    • /
    • 1996
  • An air chamber is design to keep the pressure from exceeding a predetermined value, or to prevent low pressures and colum separation. Therefore, it can be used to protect against rapid transients in a pipe system following abrupt pump stoppage. In this research, an air chmber was applied to a hypthetical pipe system to analyze attenuation effect of pressure head for different air volumes, locations, chamber areas, coefficients of orifice loss and pollytropic exponents. With an increase of air volume, the maximum pressure head at pump site is decreased and the minimum pressure head is imcreased. For different locations and areas of the chamber, the attenuation effects do not show much difference. Also, as the orifice loss coefficient increases, the maximum pressure head is decreased. For different polytropic exponents, isothermal process shows lower maximum pressure head than that of the adiabatic process.

  • PDF

Position Control of Wafer Lift Pin for the Reduction of Wafer Slip in Semiconductor Process Chamber

  • Koo, Yoon Sung;Song, Wan Soo;Park, Byeong Gyu;Ahn, Min Gyu;Hong, Sang Jeen
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.18-21
    • /
    • 2020
  • Undetected wafer slip during the lift pin-down motion in semiconductor equipment may affect the center to edge variation, wafer warpage, and pattern misalignment in plasma equipment. Direct measuring of the amount of wafer slip inside the plasma process chamber is not feasible because of the hardware space limitation inside the plasma chamber. In this paper, we demonstrated a practice for the wafer lift pin-up and down motions with respect to the gear ratio, operating voltage, and pulse width modulation to maintain accurate wafer position using remote control linear servo motor with an experimentally designed chamber mockup. We noticed that the pin moving velocity and gear ratio are the most influencing parameters to be control, and the step-wised position control algorithm showed the most suitable for the reduction of wafer slip.

정적챔버내의 고압 가솔린 인젝터의 연료분무구조 (The Fuel Spray Structure of High Pressure Gasoline Injector in a Constant Volume Chamber)

  • 귄의용;조남효
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.10-17
    • /
    • 2000
  • This work presents an investigation of aerodynamic characteristics of fuel spray injected from a high pressure hollow cone swirl injector into a constant volume chamber. Laser tomography visualization was used to interrogate the fuel and air mixing characteristics and the effect of chamber pressure and temperature increase was analyzed, Preliminary results on spray development showed that mixing effect tends to increase with the increase of injection pressure and chamber gas pressure yielding a decrease of spray penetration and an attenuation of well-defined vortex structure. Topological analysis of the spray structure has been performed to initiate the understanding of mixing and vaporization process. For the present experimental conditions fuel injection pressure and chamber gas pressure appear as the dominant factors which govern the transient mixing characteristics. Moreover spray atmixation characteristics are improved by increasing chamber gas temperature.

  • PDF

Chamber Monitoring with Residual Gas Analysis with Self-Plasma Optical Emission Spectroscopy

  • 장해규;이학승;박정건;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.262.2-262.2
    • /
    • 2014
  • Plasma processing is an essential process for pattern etching and thin film deposition in nanoscale semiconductor device fabrication. It is necessary to maintain plasma chamber in steady-state in production. In this study, we determined plasma chamber state with residual gas analysis with self-plasma optical emission spectroscopy. Residual gas monitoring of fluorocarbon plasma etching chamber was performed with self-plasma optical emission spectroscopy (SPOES) and various chemical elements was identified with a SPOES system which is composed of small inductive coupled plasma chamber for glow discharge and optical emission spectroscopy monitoring system for measuring optical emission. This work demonstrates that chamber state can be monitored with SPOES and this technique can potentially help maintenance in production lines.

  • PDF

모형 지반의 최대 전단탄성계수 평가를 위한 벤더 엘리먼트 시험의 적용 (Application of Bender Element Tests for the Estimation of Maximum shear Modulus in Calibration Chamber)

  • 권형민;고영주;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1278-1284
    • /
    • 2008
  • This study carried out bender element tests in a calibration chamber in order to estimate the characteristics of soil specimen prepared in a calibration chamber. Basically, the purpose of bender element test is to measure the shear wave velocity. Bender element test cannot only confirm the status of soil specimen deposited in a chamber, but also estimate the consolidation process indirectly. In order to carry out bender element test in a calibration chamber, a pair of bender elements was installed inside the chamber, using the 'ㄷ' shaped frame. For the sandy soils having various relative densities in various stress conditions, the maximum shear modulus was estimated. From the comparison with bender element test results in a triaxial testing device, testing device and procedure was validated.

  • PDF

라디칼 인젝터를 적용한 연소실의 신기유입특성에 관한 연구 (The Inflow Characteristics of Fresh Air in the Combustion Chamber having the Radical Injector)

  • 박권하;전재혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.506-513
    • /
    • 2008
  • The engine containing a radical injector has been studied to improve the performances of efficiency and to reduce the exhaust emissions recently. The engine is far different from general compression ignition engines or spark ignition engines for the concept of combustion process. The inflow characteristic from main chamber into radical chamber during compression stroke is important because the radical chamber must have enough fresh air to generate appropriate radicals. The numerical simulation is performed in each specific shape and the engine speed by using KIVA code. The result shows that the fresh air inflow from main chamber into the radical chamber is the best at 45 degree of the hole angle.

가스유동해석을 통한 복합소호 아크챔버의 압축-팽창 과정 분석 (Investigation of the Compression-Decompression Process in a PASB Chamber with Gas Flow Simulation)

  • 이종철;김우영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1362_1363
    • /
    • 2009
  • In this study, we predicted the thermal breakdown of high-voltage interrupter with the characteristics of thermal plasmas such as temperature, pressure and concentration of the ablated material by using a commercial CFD program. The results showed that the pressure build-up inside the chamber was proportional to the magnitude of arcing current because the quantities of heat energy and ablated mass also increase together with the current during the compression process. And during the decompression process, the reverse flow was not coincided with the magnitude of the applied current due to the compressibility of the gas through backflow channel. The present method is expected to be useful for the design of guideline and interruption capacity on the thermal breakdown of a PASB chamber.

  • PDF