• 제목/요약/키워드: Problem Space

검색결과 3,975건 처리시간 0.025초

SOLVING SINGULAR NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS IN THE REPRODUCING KERNEL SPACE

  • Geng, Fazhan;Cui, Minggen
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.631-644
    • /
    • 2008
  • In this paper, we present a new method for solving a nonlinear two-point boundary value problem with finitely many singularities. Its exact solution is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximation $u_n(x)$ to the exact solution u(x) is obtained and is proved to converge to the exact solution. Some numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method are compared with the exact solution of each example and are found to be in good agreement with each other.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • 대한수학회지
    • /
    • 제55권4호
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

WEAK AND STRONG CONVERGENCE THEOREMS FOR AN ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTION AND A MIXED EQUILIBRIUM PROBLEM

  • Yao, Yong-Hong;Zhou, Haiyun;Liou, Yeong-Cheng
    • 대한수학회지
    • /
    • 제46권3호
    • /
    • pp.561-576
    • /
    • 2009
  • We introduce two iterative algorithms for finding a common element of the set of fixed points of an asymptotically k-strict pseudo-contraction and the set of solutions of a mixed equilibrium problem in a Hilbert space. We obtain some weak and strong convergence theorems by using the proposed iterative algorithms. Our results extend and improve the corresponding results of Tada and Takahashi [16] and Kim and Xu [8, 9].

A note on SVM estimators in RKHS for the deconvolution problem

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • 제23권1호
    • /
    • pp.71-83
    • /
    • 2016
  • In this paper we discuss a deconvolution density estimator obtained using the support vector machines (SVM) and Tikhonov's regularization method solving ill-posed problems in reproducing kernel Hilbert space (RKHS). A remarkable property of SVM is that the SVM leads to sparse solutions, but the support vector deconvolution density estimator does not preserve sparsity as well as we expected. Thus, in section 3, we propose another support vector deconvolution estimator (method II) which leads to a very sparse solution. The performance of the deconvolution density estimators based on the support vector method is compared with the classical kernel deconvolution density estimator for important cases of Gaussian and Laplacian measurement error by means of a simulation study. In the case of Gaussian error, the proposed support vector deconvolution estimator shows the same performance as the classical kernel deconvolution density estimator.

사출 성형품의 휨과 웰드라인을 최적화하기 위한 자동 금형설계 방법 (Automatic Mold Design Methodology to Optimize Warpage and Weld Line in Injection Molded Parts)

  • 박종천
    • 소성∙가공
    • /
    • 제9권5호
    • /
    • pp.512-525
    • /
    • 2000
  • Designers are frequently faced with multiple quality issues in injection molded parts. These issues are usually In conflict with each other, and thus tradeoff needs to be made to reach a final compromised solutions. The objective of this study is to develop an automated injection molding design methodology, whereby part defects such as warpage and weld line are optimized. The features of the proposed methodology are as follows: first, Utility Function approach is applied to transform the original multiple objective problem into single objective problem. Second is an implementation of a direct search-based Injection molding optimization procedure with automated consideration of process variation. The Space Reduction Method based on Taguchi's DOE(Design Of Experiment) is used as a general optimization tool in this study. The computational experimental verification of the methodology was partially carried out for a can model of Cavallero Plastics Incorporation, U. S. A. Applied to production, this study will be of immense value to companies in reducing the product development time and enhancing the product quality.

  • PDF

SELF-ADJOINT INTERPOLATION ON AX = Y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • 호남수학학술지
    • /
    • 제29권1호
    • /
    • pp.55-60
    • /
    • 2007
  • Given operators X and Y acting on a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we showed the following : Let $\cal{L}$ be a subspace lattice acting on a Hilbert space $\cal{H}$ and let X and Y be operators in $\cal{B}(\cal{H})$. Let P be the projection onto $\bar{rangeX}$. If FE = EF for every $E\in\cal{L}$, then the following are equivalent: (1) $sup\{{{\parallel}E^{\perp}Yf\parallel\atop \parallel{E}^{\perp}Xf\parallel}\;:\;f{\in}\cal{H},\;E\in\cal{L}\}\$ < $\infty$, $\bar{range\;Y}\subset\bar{range\;X}$, and < Xf, Yg >=< Yf,Xg > for any f and g in $\cal{H}$. (2) There exists a self-adjoint operator A in Alg$\cal{L}$ such that AX = Y.

신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델에 관한 연구 (A Study on the State Space Identification Model of the Dynamic System using Neural Networks)

  • 이재현;강성인;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.115-120
    • /
    • 1997
  • System identification is the task of inferring a mathematical description of a dynamic system from a series of measurements of the system. There are several motives for establishing mathematical descriptions of dynamic systems. Typical applications encompass simulation, prediction, fault diagnostics, and control system design. The paper demonstrates that neural networks can be used effective for the identification of nonlinear dynamical systems. The content of this paper concerns dynamic neural network models, where not all inputs to and outputs from the networks are measurable. Only one model type is treated, the well-known Innovation State Space model(Kalman Predictor). The identification is based only on input/output measurements, so in fact a non-linear Extended Kalman Filter problem is solved. Even for linear models this is a non-linear problem without any assurance of convergence, and in spite of this fact an attempt is made to apply the principles from linear models, an extend them to non-linear models. Computer simulation results reveal that the identification scheme suggested are practically feasible.

  • PDF

시변 파라메터를 갖는 선형시스템의 균형화된 모델 간략화 (A Balanced Model Reduction for Linear Parameter Varying Systems)

  • 류석환
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.351-356
    • /
    • 2002
  • This papaer deals with a model reduction problem for linear systems with time varying parameters. For this problem, a controllability Grammian and an observability Grammian are introduced and computed by solving linear matrix inequalities. Using the controllability/observability Grammian, a balanced state space realization for linear parameter varying systems is obtained. From the balanced state space realization, a reduced model can be obtained by truncating not only states but also time varying parameters and an upper bound of the model reduction error is derived as well.

'관측 시간'개념을 이용한 로보트의 시변 장애물 회피 동작 계획 (Robot motion planning for time-varying obstacle avoidance using view-time concept)

  • 고낙용;이범희;고명삼;남윤석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1040-1045
    • /
    • 1991
  • An approach to time-varying obstacle avoidance problem is pursued. The mathematical formulation of the problem is given in Cartesian space and in joint space. To deal with the time-varying obstacles, view-time is introduced. A view-time is the time interval viewing the time-varying obstacles to model equivalent stationary obstacles. For the analysis of the properties of the view-time, avoidability measure is defined as a measure of easiness for a robot to avoid obstacles. Based on the properties, a motion planning strategy to avoid time-varying obstacles is derived. An application of the strategy to the collision-free motion planning of two SCARA robots and the simulation on the application are given.

  • PDF

Modeling of fractional magneto-thermoelasticity for a perfect conducting materials

  • Ezzat, M.A.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.707-731
    • /
    • 2016
  • A unified mathematical model of the equations of generalized magneto-thermoelasticty based on fractional derivative heat transfer for isotropic perfect conducting media is given. Some essential theorems on the linear coupled and generalized theories of thermoelasticity e.g., the Lord- Shulman (LS) theory, Green-Lindsay (GL) theory and the coupled theory (CTE) as well as dual-phase-lag (DPL) heat conduction law are established. Laplace transform techniques are used. The method of the matrix exponential which constitutes the basis of the state-space approach of modern theory is applied to the non-dimensional equations. The resulting formulation is applied to a variety of one-dimensional problems. The solutions to a thermal shock problem and to a problem of a layer media are obtained in the present of a transverse uniform magnetic field. According to the numerical results and its graphs, conclusion about the new model has been constructed. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.