• Title/Summary/Keyword: Problem Decomposition

Search Result 585, Processing Time 0.037 seconds

Shape Reconstruction from Large Amount of Point Data using Repetitive Domain Decomposition Method (반복적 영역분할법을 이용한 대용량의 점데이터로부터의 형상 재구성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.93-102
    • /
    • 2006
  • In this study an advanced domain decomposition method is suggested in order to construct surface models from very large amount of points. In this method the spatial domain of interest that is occupied by the input set of points is divided in repetitive manner. First, the space is divided into smaller domains where the problem can be solved independently. Then each subdomain is again divided into much smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together to obtain a solution of each subdomain using partition of unity function. Then the solutions of subdomains are merged together in order to construct whole surface model. The suggested methods are conceptually very simple and easy to implement. Since RDDM(Repetitive Domain Decomposition Method) is effective in the computation time and memory consumption, the present study is capable of providing a fast and accurate reconstructions of complex shapes from large amount of point data containing millions of points. The effectiveness and validity of the suggested methods are demonstrated by performing numerical experiments for the various types of point data.

Parallel Processing Based Decompositon Technique for Efficient Collaborative Optimization (효율적 분산협동최적설계를 위한 병렬처리 기반 분해 기법)

  • Park, Hyeong-Uk;Kim, Seong-Chan;Kim, Min-Su;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.883-890
    • /
    • 2001
  • In practical design studies, most of designers solve multidisciplinary problems with large size and complex design system. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder the original design processes to minimize total computational cost. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

Filling Holes in Large Polygon Models Using an Implicit Surface Scheme and the Domain Decomposition Method

  • Yoo, Dong-Jin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.3-10
    • /
    • 2007
  • A new approach based on implicit surface interpolation combined with domain decomposition is proposed for filling complex-shaped holes in a large polygon model, A surface was constructed by creating a smooth implicit surface from an incomplete polygon model through which the actual surface would pass. The implicit surface was defined by a radial basis function, which is a continuous scalar-value function over the domain $R^{3}$. The generated surface consisted of the set of all points at which this scalar function is zero. It was created by placing zero-valued constraints at the vertices of the polygon model. The well-known domain decomposition method was used to treat the large polygon model. The global domain of interest was divided into smaller domains in which the problem could be solved locally. The LU decomposition method was used to solve the set of small local problems; the local solutions were then combined using weighting coefficients to obtain a global solution. The validity of this new approach was demonstrated by using it to fill various holes in large and complex polygon models with arbitrary topologies.

Generalized Cross Decomposition Algorithm for Large Scale Optimization Problems with Applications (대규모 최적화 문제의 일반화된 교차 분할 알고리듬과 응용)

  • Choi, Gyung-Hyun;Kwak, Ho-Mahn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.117-127
    • /
    • 2000
  • In this paper, we propose a new convex combination weight rule for the cross decomposition method which is known to be one of the most reliable and promising strategies for the large scale optimization problems. It is called generalized cross decomposition, a modification of linear mean value cross decomposition for specially structured linear programming problems. This scheme puts more weights on the recent subproblem solutions other than the average. With this strategy, we are having more room for selecting convex combination weights depending on the problem structure and the convergence behavior, and then, we may choose a rule for either faster convergence for getting quick bounds or more accurate solution. Also, we can improve the slow end-tail behavior by using some combined rules. Also, we provide some computational test results that show the superiority of this strategy to the mean value cross decomposition in computational time and the quality of bounds.

  • PDF

Flexible Mixed decomposition Method for Large Scale Linear Programs: -Integration of a Network of Process Models-

  • Ahn, Byong-Hun;Rhee, Seung-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1986
  • In combining dispersed optimization models, either primal or dual(or both) decomposition method widely used as an organizing device. Interpreting the methods economically, the concepts of price and resource-directive coordination are generally well accepted. Most of deomposition/ integration methods utilize either primal information of dual information, not both, from subsystems, while some authors have developed mixed decomposition approaches employing two master problems dealing primal and dual proposals separately. In this paper a hybrid decomposition method is introduced, where one hybrid master problem utilizes the underlying relationships between primal and dual information from each subsystem. The suggested method is well justified with respect to the flexibility in information flow pattern choice (some prices and other quantities) and to the compatibility of subdivision's optimum to the systemwide optimum, that is often lacking in conventional decomposition methods such as Dantzig-Wolfe's. A numerical example is also presented to illustrate the suggested approach.

  • PDF

A Decomposition Method for the Multi-stage Dynamic Location Problem

  • Kahng, Hyun-Kon
    • Management Science and Financial Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-37
    • /
    • 1995
  • This paper suggests a procedure of decomposing a multi-stage dynamic location problem into stages with respect stage. The problem can be formulated as a mixed integer programming problem, which is difficult to be solved directly. We perform a series of transformations in order to divide the problem into stages. In the process, the assumption of PSO (production-system-only) plays a critical role. The resulting subproblem becomes a typical single-stage dynamic location problem, whose efficient algorithms have been developed efficiently. An extension of this study is to find a method to integrate the solutions of subproblems for a final solution of the problem.

  • PDF

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

A PARALLEL FINITE ELEMENT ALGORITHM FOR SIMULATION OF THE GENERALIZED STOKES PROBLEM

  • Shang, Yueqiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.853-874
    • /
    • 2016
  • Based on a particular overlapping domain decomposition technique, a parallel finite element discretization algorithm for the generalized Stokes equations is proposed and investigated. In this algorithm, each processor computes a local approximate solution in its own subdomain by solving a global problem on a mesh that is fine around its own subdomain and coarse elsewhere, and hence avoids communication with other processors in the process of computations. This algorithm has low communication complexity. It only requires the application of an existing sequential solver on the global meshes associated with each subdomain, and hence can reuse existing sequential software. Numerical results are given to demonstrate the effectiveness of the parallel algorithm.

An Efficient Algorithm for a Block Angular Linear Program with the Same Blocks (부분문제가 같은 블록대각형 선형계획문제의 효율적인 방볍)

  • 양병학;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.12 no.2
    • /
    • pp.42-50
    • /
    • 1987
  • This objective of this paper is to develop an efficient method with small memory requirement for a feed-mixing problem on a micro computer. First this method uses the decomposition principle to reduce the memory requirement. Next, the decomposition principle is modified to fit the problem. Further four different variations in solving subproblems are designed in order to improve efficiency of the principle. According to the test with respect to the processing time, the best variation is such that the dual simplex method is used, and the optimal basis of a previous subproblem is used as an initial basis, and the master problem is (M +1) dimensional. In general, the convergence of solution becomes slower near the optimal value. This paper introduces a termination criterion for a sufficiently good solution. According to the test, 5%-tolerence is acceptable with respect to the relation between the processing time and optimal value.

  • PDF

Adaptive Eigenvalue Decomposition Approach to Blind Channel Identification

  • Byun, Eul-Chool;Ahn, Kyung-Seung;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.317-320
    • /
    • 2001
  • Blind adaptive channel identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling leading to the so-called, second order statistics techniques. And adaptive blind channel identification techniques based on a off-line least-squares approach have been proposed. In this paper, a new approach is proposed that is based on eigenvalue decomposition. And the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present a adaptive algorithm to solve this problem. The performance of the proposed technique is evaluated over real measured channel and is compared to existing algorithms.

  • PDF