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Abstract

This paper suggests a procedure of decomposing a multi-stage dynamic lo-
cation problem into stages with respect stage. The problem can be
formulated as a mixed integer programming problem, which is difficult to be
solved directly. We perform a series of transformations in order to divide the
problem into stages. In the process, the assumption of PSO (production-sys-
tem-only) plays a critical role. The resulting subproblem becomes a typical
single-stage dynamic location problem, whose efficient algorithms have been
developed efficiently. An extension of this study is to find a method to inte-
grate the solutions of subproblems for a final solution of the problem.

1. Introduction

In many industries, it becomes common for a firm to operate plants in sev-
eral countries. Through such a global manufacturing system the firm may be
able to save costs or avoid trade barriers. As a result, more and more
products manufactured in one country are finding their way into other
countries. These products are not just finished goods; they also include
intracompany transfers such as components and processed materials.

1) This research is supported by the 1994 fund from the office of research affai, Yonsei University.
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Television manufacturing is typical of this type of industry. For example, -
Panasonic has been producing color chassis in its Singapore plants. Such a
firm has to decide whether to establish and expand an international network
of plants. In other words, it must decide when and where to build plants (or
add capacity) over a planning horizon of several years. It also must deter-
mine the optimal production / logistics schedule for the products.
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[Figure 1] An example of Problem (P)

This problem (P) generically belongs to the multi-stage dynamic location
problem. Figure 1 shows a simple example of problem (P) that has a serial
structure and three stages and three locations for a given time period. Prob-
lem (P) can be easily formulated as a mixed integer programming (MIP)
problem. Unfortunately, a MIP problem is typically difficult to solve directly.
A popular way to attack a MIP problem is a decomposition approach. The
most famous work to attack a multi-stage static location problem was done
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by Geoffrion and Graves [6]. Their approach is to develop a single-stage
path formulation from a multi-stage network formulation and to apply
Bender’s decomposition algorithm. Another study with a multi-stage context
is the multi-stage inventory problem. It is decomposed into easily-solvable
single-stage subproblems by using the “echelon inventory” concept (Clark
and Scarf [2]).

The purpose of this paper is to suggest a procedure of decomposing the
problem (P) into small subproblems with respect to stage. We use an ex-
tended version of the “echelon inventory” concept in decomposing the prob-
lem. After a successful decomposition, the resulting subproblem becomes the
typical single-stage dynamic location problem, whose efficient solution
approaches have been developed (Erlenkotter [3], Van Roy and Erlenkotter
[9], Fong and Srinivasan [4, 5], Schulman [8]).

We first model the problem as a mixed integer programming problem
(MIP). One key assumption of this problem is the assumption of
production-system-only (PSO), which says that only production plants are
considered. (no warehouses) The model itself is not appropriate to be
decomposed by stages. We perform a series of transformations for the
model. The modified problem is decomposed by stages. Since the resulting
subproblem, which is an arc-based formulation, no longer maintains the as-
sumption of PSO, it is transformed into a path-based formulation by finding
the shortest path from each source and adding its cost to the production
costs of each source. We find the shortest paths by applying the
Bellman-Ford algorithm with the upper bound of the number of arcs which
represents the assumption of PSO. The path-based subproblem becomes a
single-stage dynamic location problem. Finally, we make some conclusive
remarks and suggest some extensions of this paper. One of such extensions is

to study how to integrate solutions of the subproblems to find a final solution
for this problem.
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2. A model of the Problem and Associated Transformations
2. 1. An MIP Model of the Problem: Problem (P1)

2. 1. 1. Notation
We use the following notation in formulating the problem.
k,7 = index of the plants
t = index of the time periods
: = index of the items

X = units produced of item 7 at plant £ in time period £. It has a pro-
duction cost ¢,

T,; = the number of units of item : transferred from plant £ to plant ; in
time period ¢. It has a transfer cost «,;,

Z. = the number of newly opened plants of plant £ in time period ¢. It has a
fixed cost £,

S(k) = a set of immediate successors of plant k
s*(k) = the local immediate successor of plant 4. “Local” means “located in
the same location”

S'(k) = S(k)—s*(k). a set of foreign immediate successors of plant 4.
“Foreign” means “located in a different location”

p*(k) = a set of local immediate predecessors of plant &

J(k) = a set of foreign plants of the same stage? as plant &

m(z) = the market for item :

K@) = a set of plants located at the location of #:(7)

F = a set of plants at the final stage

F1GZ) = FNK®G). This is the final plant located at the location of m(7)

F2() = F—FI(). A set of final plants that are not located at the location of
m(z)

7., — the number of units of the product produced at plant 4 that are

required for one unit of product produced at its immediate successor

for item ¢. ., =7; where j€ J(k)

2) A “stage” is a set of plants in various locations, all of which make the same part(or more generally,
perform the same manufacturing process).
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7" = the number of units of the product produced at plant £ that are
required for one unit of the final product for item :. *,=7*; where j&
J(k)

g, = capacity of plant £. ¢q.=¢q; where j€ J(k)

d,; = demand for item 7 in time period ¢

2. 1. 2. Formulation

We have a mixed integer programming (MIP) problem, denoted Problem
(P1).
Problem (P1)

MIN ZthZi (ckn‘ * Xim'"_zjesw Wyt ° T@'n‘) -+ Zer fkt * Zkt

subject to

Xui = Ljesw Tu fork&F, t, i (11)
Xuti = Tmini for keF, t, i (12)
Tiewn + e Tivwn = T * Xews for k&F, t, i (13)
Y ier Timin = Ay for t, i (14)
2 Xui < Qe Licncilinn for k, t (15)
X =20 T,;, =20, and Z,, = GIN fork, j, t, 1 (16)

Problem (P1) is a network model with fixed costs. A node represents a
plant where production activity occurs and has production costs and fixed
costs. An arc represents a flow of a product from a plant at a stage to a
plant at the next stage, and has transfer costs. For each node, constraints
(11) and (12) are the outgoing conservation flow equations and constraints
(13) and (14) are the incoming conservation flow equations and constraint
(15) is the capacity / forcing constraint.

2. 1. 3. The Assumption of Production-System-Only (PSO)

Note that the node represents only a production system (plant), but not a
distribution system (warehouse). This assumption of Production-System-
Only (PSO) has the following properties, which is used critically in
decomposing the problem. |
(Property 2.1) A product has to be directly shipped from a node at a stage
to a node at its immediate successor. Hence no node can serve as a
transshipment node.
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(Property 2.2) From Property 2.1, a product visits only one node per stage. -
Hence, a product produced at stage s visits | B(s)| +1 (including the node at
stage s) nodes before reaching its market where B(s) is a set of successors of
stage s.

(Property 2.3) Let Y(s); be the a sequence of nodes visited by the product

produced at stage s for (¢, 7) and let b be a successor of stage s. Then Y(s),
=Y ,+Y(®), where Y’ , is the one whose last node is the first node of Y (),.

k—1

For example, Y(s),={n'—=>n'—, -, »n'"' = n* > n''—, - -}, Y ,={n' =

n'—, -, ->n'' = #'}, and Y(b), =" - »n*'—, --, >»n™} where »' (n") is the node

producing a product at stage s (b) and »' € S(»'") for 2 < 7 < m. In words, a
product produced at stage s has to be assembled with and travel to the mar-
ket with a product produced at its successor b.

(Property 2.4) Problem (P1) assumes an assembly structure or a serial
structure (which is a typical production structure), but not an arborescent
structure (which is a typical distribution structure).

2. 1. 4. Decomposition by Stages and Coupling Variables in Problem
(P1)

In the real situation, Problem (P1) is often a large mixed integer program-
ming problem which is difficult to solve directly. A very popular, if not stan-
dard, way to attack such a large problem is to decompose the problem into
smaller subproblems and to integrate their solutions into a global solution.
One could think of decomposing Problem (P1) along any of its four
dimensions: stages, locations, time periods, and items. In this study we
choose to decompose the problem by stages. However, Problem (P1) itself is
not appropriate to be decomposed by the stages since its transfer variables,
T ., are the coupling variables over the stages. These coupling variables link

a stages to other stages not only explicitly but also implicitly. Three alterna-
tive formulations are developed in order to eliminate the explicit and im-
plicit linkages in Problem (P1): Problem (P2) and (P3) are for eliminating
the explicit linkages, and Problem (P4) is for eliminating the implicit
linkages.
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2. 2. Modified Formulations; Problem (P2) and (P3)

2. 2. 1. Problem (P2)

The explicit linkage is shown in 7T°,; where j€S(k). The explicit linkage is
eliminated in two steps: the first step is to delete intra-location transfer
variables (T,..) from the model by substitution and the second step is to
delete the remaining 7', where j€ S’ (k) by a notational change. |
(1) Deleting intra-location transfer variables

In Problem (P1), T ..w; where k& F and T,,,; where k€ F1() are intra-lo-

cation transfer variables. By definition, S(k)=s*(k)+S’ (k). Hence constraint
(11) can be expressed as follows:

Xui = Trewsi + Zjes’(kl Tkjre’ for k& F, L, ]
Or
Tks'(k)ﬁ = an' — Zjes’(k) Tkjt:‘ for k & F, t, z (11’ )

T can be deleted from the model by adding (11') to (13), which gives
new conservation flow equations:

X — ZjES'(k) T = T » Xewn — 2gesw Lisws for k& F, t, 12 (21")
From constraint (11’ ) and the non-negativity of T .
Xii — ZjES’(k) Ty =0 for k& F, ) | (20’ )

Again, F=FI1G)+ F2() for each i. Constraint (12) and (14) can be expressed
as follows:

an‘ = Tkm(:')ti fOI‘ kEF.Z(Z), t, Z (12’ )
kai = Tkm(i)t;' fOI‘ ke FZ(Z.), t, i (12”)
ka(f)ti + ZjEF?(i) ij(i)t:' - dti fOI‘ ke FI(Z.), t, i (14’ )

Similarly, T ..;; where k€ F1(:) can be deleted by adding constraint (12") to
constraint (14’ ), which gives,

Xsi + ZjEFZ(:‘) ij(au' = dr;‘ for ke F 1(3'), £, ] (22’ )
From constraint (12"),
Xii — Timopn = 0 for ke F2(), t, 1 (23")

Substituting constraint (11’) and (12’ ) into the objective function gives new
cost parameters.
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by =CpitWeenn @NA V=W, — W for Kk, t, L
Hence v,..,,—0, which means that intra-location transfer variables are de-

leted from the objective function.

A physical interpretation of the above step is as follows: The transfer
occurs in two directions: to the next stage or to any other location. Since a
product always has to be shipped to the next stage regardless of locations,

the intra-location transfer cost to the next stage (u,..;) can be considered

as a part of the production cost. As a result, the new transfer cost (v,,) no

longer includes the transfer cost to the next stage and represents only the
transfer cost to any other location, which leads to the next step.

(2) Notational changes for T, where j€ S’ (k)

T . where j€S’' (k) can be replaced by T, where j' €p*(¢)NJ(k), without a
loss of generality since (a) there is one-to-one correspondence between
them, (b) v,,—Vv. and (¢) v;,=0 where j€s*(j' ). That is to say, a receiving
node can be replaced by its local immediate predecessor that is in the same
stage as its sending node. The receiving node is represented by the second

subscript in the transfer variable. Hence, the second subscript is modified as
follows:

Yiestw Tow —> 2w Ty in (217) and (207),

Yierw Tiewn = 2w Tiw In (21'),

> jert Timtii = Yjer T —> 2jesw Ty Where ke F1(i) in (227),
Timos — Ty Wwher j&eF1(i), keF2(i) in (23").

The above steps give Problem (P2).
Problem (P2)

MIN ZthZf (bfm' : th:'+Zj€}(k) Vb'ti ) Tkjt:')_’_zkzt f}ef * Zkt

s. t.

Xei — 2w T =0 fork&F,t, i (20)
X t+ Ziesw LTiwi — Toinl = T » X for k&F, t, i (21)
Xii + Ziesw Tis = d, for ke F1(i), t, i (22)
Xui — Ty =0 for ke F2(i), je F1(i)t, i, (23)
2 Xui < Qe * 2isnst Ly for k, t (24)

Xui =20, Ty, = 0and Z,, = GIN fork, j, t, 1 (25)
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where b,,=c,,+uiw,; and Vgiti = WUgii — Upetersie

2. 2. 2. Two Assumptions on the Cost Structure and Problem (P2).
Consider the following two assumptions:

(Assumption One) All transfer costs in Problem (P2) are positive (v, > 0).
(Assumption Two) All transfer costs in Problem (P2) satisfy the law of tri-
angle inequality (v,, < v, + v,.).

Proposition 2.1. When all transfer costs in Problem (P2) satisfy both
assumptions, constraint (20) is redundant.

{Proof) First consider the following two lemmas.

[Lemma 1] If t,;, > O for all k, jeJ(k), t, i, then T*,,,- T*.;, = 0 for k, j€J

(k), t, i, where T*,, and T*,; are part of the optimal solution of Problem
(P2).

<PI‘00f> SLIppOSe that T*}ejr;‘ . *jkt;' > 0. Let T*kjﬁ =a and T*J'ku‘ = b and e =
Min {a, b}. And let T',,, = a—e and T',,;, = b—e. Hence T ;- T u; = 0. If

we replace T*,, and T*,, with T',, and T',, respectively, these new

solutions T’ ,;; and T’ still satisfy the conservation flow equation (21) and
hence are feasible. Moreover, it has a smaller objective value by the amount,
e : (v, 1+V,). This contradicts the assumption that T*,, and T*,; are part of
the optimal solution. Hence T*,,; - T*,, = 0. Q. E. D.
[Lemma 2] If the law of triangle inequality holds for transfer costs (that is, v
wi < VaitVy) then T, - T%,; = 0 where (1, j)€J(k).
{Proof) Suppose T*,, - T*, > 0 and T*,,, < T*,. Let T' ,;, = T*;, — T*. and
T i = T*.» and T, = 0. The new variables satisfy the conservation flow
equation (21) and hence are feasible. The transfer cost of the original sol-
ution is v, - Ty + Vi T*i=Vy - (T — T*%) + (Vi + Vi) - Ty =
Vii * T + (Vi + Vi) - T e But, from the law of triangular inequality, vy, <
Vi Vi Thus, Vv, Tt Vutvy) - T i Vi * Tt Vi T e This
contradicts the fact that T*,,, and T*,, are part of the optimal solution. Hence
T - T*;; =0. It is also true when T*,; < T*.. Q. E. D.
From the above two lemmas, if T*,,>0 where je J(k), then T*,= O
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where 1’eJ(k) and T*;, = 0 where 17 €J(j). In words, for given (t, i), a -
sender (k) cannot receive from any plant (T*,; = 0 where 1’ € J(k)) and a
receiver (j) cannot send to any plant (T*,= O where 1” € J(j). Hence, in

the optimal solution, a plant can be either a sender or a receiver, but not
both at the same time for a given (t,i). | |
Now let us prove the proposition. Constraint (20) and constraint (21) are,

X oi— e T = 0 for k&F, t, i (20)
Xt e [T*—T*] = Ty * X*ewu for k&F, t, i : (21)
where X*,. and T*,,; are part of the optimal solution of Problem (P2).

We will prove that constraint (20) is implied by constraint (21) and the
non-negativity constraint of X,. From the above lemmas, plant k can be
categorized as either a sender or a receiver. When plant k is a sender, > ;e

*.= 0 in constraint (21). Hence constraint (21) becomes X*,,—> jen T*i =
r. - X*w: = 0, which is constraint (20). When plant k is a receiver, > _;c;u Ty
= 0 in constraint (20). Hence constraint (20) becomes, X*,;, =0, which is its

non-negativity constraint. Therefore, for the optimal solution, constraint
(20) is implied by constraint (21) and the non-negativity constraint and
hence is redundant.

[ Note] The assumption of v,,, > 0 in Problem (P2) is equivalent to the as-

sumption of U,.w; < u,; whenever jeS’(k) in Problem (P1), i.e., transfer

costs within a location must be less than the transfer costs between
locations. Henceforth, Problem (P2) without constraint (20) is denoted as
Problem (P3).
Problem (P3)

MIN ZngZ;‘ (b]m‘ * ng;‘+z:j6f(k) Vlv'ti : Tkjt;’) + Zka fkt * Zkt

S.t.

Xt iesw [Tii— Ton] = o * Xewn for k& F,t,i (21)
Xt 2w Tii—=dy for ke F1(i), t, i (22)
Xi— T =0 for ke F2(i),je F1(i),t,i (23)
2 Xii < Qi * Licnst L for k,t (24)
X, =0, Tys = 0and Z, = GIN for k,j,t,i (25)

Proposition 2.2. Problem (P3) still maintains the assumption of PSO by the
two assumptions.
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{Proof) The optimal solution of Problem (P3) has only direct transfers (no
transshipment nodes) due to the two assumptions. This is a property of the
assumption of PSO (Property 2.1) Q. E. D.

2.3. An Echelon Model : Problem (P4)

Variable T, in Problem (P3) still implicity links every stage to all its pre-

vious stages. A new variable, “location transfer,” is introduced to remove the
implicit linkage.

2.3.1. Location Transfer, LT,;.

Location transfer is defined as the total amount of a product transferred
between two locations regardless of the stages (as product itself or as part of
an assembly). This is basically the same concept as the echelon inventory.

Formally, LLT,,; can be defined as follows. Let R(k) be a set of plants that
are located in the same location as plant k and form a path from plant k to
the last plant, or R(k)={k, k', k’, ---kK"', k} where k'=s*(k), k’=s*(k'), ---,
k'=s*(k"') and the last plant. And let R(k,u)=R(k)—R(u)=(k, k', Kk’ --
u—1} where k'=s*(k),k’=s*(k'), .-, u—1=p*(u) and ueR(k). Let o, =
I licrsw i Where a,,=1. In words, a,, is the number of units of the product

produced at plant k that are required for one unit of product produced at
plant u for item i.

Then LT, = 2 ucrw, verivnvw O * T (21a)
And its cost, W, =V —2 e w.0eri) o Toi * Voan (22a)
Or from (21a) and (22a)

Ty =LT i~ s + LT emei (23a)
Vit =W 2 e, cep0 (0 Opki * Wiesi (24a)

Equation (21a) and (23a) show that T,, and LT, have a one-to-one linear
transformation relationship.

2.3.2. Problem (P4) |
Substituting equation (23a) into Problem (P3) and solving for X,; in the
conservation flow equations give the following Problem (P4)
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Problem (P4)
MIN ZthZi (bkf:' ° thf+ZjE](k) wkfﬁ LTkﬂf)+Zth fkr * Zkt

s.t. |

Ty * LTeweii—LTy < O fork, t, i (30)
X+ Tesw [(LTu—LTe] = rd,  for keK(), t, i | (31)
Xyt Siw [LTu—LTel=0  for k&K(), t, i (32)
S XK < U Ticnst Ziw for Kk, t (33)
X, =0, LT, > 0and Z, = GIN fork, j, t,i (34)

Proposition 2.3. Problem (P3) and Problem (P4) are equivalent.

{Proof)

Since the location fransfer is basically the same concept as the echelon in-
ventory, the proof by Afentakis et al. [1] can be used to prove this prop-
osition. It is thus not repeated here. Constraint (30) comes from constraint
(23a) and the non-negativity constraint. Q. E. D.

LT, is basically an echelon concept. However, unlike the echelon inven-

tory, it does not require the assumption that the (transfer) cost at each
stage has to be greater than the sum of the costs of all the predecessors. It is

therefore possible to have negative w,,. However, negative w,,; do not hurt
the solution procedure since they are eliminated in the subproblem as shown
later.

Problem (P4) still maintains the assumption of PSO by having [w,,+3_
PP e PN Ok © Wogi] <
[ W + 2 pePkLa e PO N(p) ki ° wpq’tz']+[W1jt;’+2p’eP(n,qu(j) Ny Xpki * Wp'q!i]“”” (25a)
where j, 1€ J(k) and P( - ) is a set of all local predecessors of plant( - )
from the assumption of the law of triangle inequality over v, in Problem

(P3) and constraint (24a). Not that this expression links a stage to its
predecessors.

3. Subproblems
3.1 The Subproblem for Problem (P4) :Problem (SP4)

It can be easily seen that Problem (P4) consists of several single-stage
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problems held together by coupling constraint (30). Thus, Problem (P4) can
be decomposed into single-stage problems by relaxing constraint (30). The
resulting subproblem (SP4) is:
Let s = index of stages and L(s)=a set of plants in stage s.

Problem (SP4) For each stage s,

MIN ZkEL(s)ZtZi [bkn‘ ) Xim‘ + ZjEJ(k) ijti * LTkjt:‘] + ZkEL(s)Zt fkt * Zkt
S.t

X + Yy LTy — LTys] = r*, d, for ke L(s)NK(i),t,i
Xy + Yieyw LTy — LT,,1=0 for ke L(s) but& K(i),t,
1.

2 XK = Qi Lacnst Lpn for k €L(s), t

X,, LT,; >0 and Z, = GIN  for k €L(s), ti

A drawback of Problem (SP4) is that it no longer maintains the assump-
tion of PSO. From constraint (25a) in Section 2.3, we know that Problem
(P4) maintains the assumption of PSO by forcing the law of triangle in-
equality over its transfer costs.

[ijt;‘_l_ZpeP(k),qEPfj}ﬂj(p) Ak * wpqt:':] < [wklt£+ ZpEP(k),q'EP(l)ﬂj(p) Ophi * qu'r:']
A IWy S, e i apnssr Opati * W] oevevsesserssssnsesnssnsnsasssssansennanceeeess (252)

where j,1€J(k) and P( - ) is a set of all local predecessors of plant ( - ).

Note that the expression in the constraint links a stage to its predecessors.
Decomposing Problem (P4) by the stages destroys the law of triangle
inequality since each single-stage subproblem considers only its own transfer
costs. In other words, the assumption of PSO is relaxed in the process of the
decomposition. In this case, the solutions of subproblems can still be infeas-
ible to Problem (P4) even when they satisfy the coupling constraint (30).
Morever, the sum of subproblems gives a very poor lower bound for Problem
(P4) when a subproblem(s) has a negative cycle(s) of transfer costs, w,.

Hence we do need a transformation from Problem (SP4) to a subproblem
that maintains the assumption of PSO.

3.2. A Path-Based Formulation: Problem(SP).

In order to have the subproblem maintain the assumption of PSO, we
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transform Problem (SP4), which is an arc-based formulation, into a -
path-based formulation. This transformation is possible because of the
following two properties of Problem (SP4). |

(Property 3.1) A set of transfers (arcs) in a feasible solution of Problem
(SP4) always forms a path from the source to the destination where a path
is defined as a sequene of locations and the source is the location where a
product is produced and the destination is the location where the product is
consumed.
This property is based on the fact that a set of transfers that does not form a
path violates the conservation flow equations in Problem (SP4). This prop-
erty is also true for Problem (P4).

(Property 3.2) The entire set of transfer variabls can be deleted form
Problem (SP4).
This property is based on the fact that Problem (SP4) has no constraints
over its transfer variables. Hence, with property 3.1, we are free to choose a
set of transfers that consists of the best path from the source to the desti-
nation for each (¢). Transfer variables can be deleted (a) by adding the
costs of the transfer variables consisting of the best paths to the production
cost and (b) by ignoring all other transfer variables for each (¢,7). Hence the
transfer costs of the best path is considered as a part of the production cost.
This property is not true for Problem (P4) since constraint (30) is a capacity
constraint over transfer variables as well as a coupling constraint over the
stages.
The resulting path-based formulation, Problem (SP), is:

Subproblem(SP)
MIN 2 sepo22 @i+ Xi + Zpero 20 B+ Zu
s.t
2 ket Xi=Dy fort, i
Yo X <Qp * Xrcnst Lot for k €L(s), t
X, =0, Z,, = GIN for keL(s), t, i

where a,~b,,+transfer costs for the best path from source k to the desti-
nation.
D,=r*-d.
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Finding the best paths during the transformation is equivalent to solving
the shortest path problem. We use the Bellman-Ford algorithm, which
solves the following recursive equation: U'(y,6),= min{U(n—1,6),+W.3
where n is the bound on the number of arcs in the path and § is the desti-
nation and U*(#,6),= the cost of the shortest path from node k to the desti-

nation () for (t, i) subject to the condition that the path contains no more
than #n arcs.

The following proposition says that the assumption of PSO determines the
value of 5. Hence Problem (SP) can maintain the assumption of PSO in solv-
ing the shortest path problem with the proper value of n. Without the as-

sumption of PSO, n is set to o0, which produces a negatively infinite lower
bound with negative cycles.

First, the proposition needs the following notation.
{Notation)

s=the current stage and s€S;

a(b)=a solved predecessor (successor) of stage s;

P( - ),=a path at stage( - ) for (t,i), which is a sequence of locations visited
by one unit of the product manufactured at stage ( - );

NP( - ),= |P(- ),l—1, which is the number of arcs in P( - ), where an arc

represents a transfer between two locations; |

p( - ) = the number of successors of stage ( - ) plus one, |B( - )+1];

Proposition 3.1.

The assumption of PSO is satisfied if and only if following (31a) is satisfied:

max {0, NP(a),—u(a)+u(s), NP(b),} < NP(s),; < min {u(s), NP(a),, NP(b),

—u(D)Fu(S)} FOr t, i, ANd SES  +eereerrerrrrrriirrriieriiiiiieccieeeiieeeneeeeneee (312)

{Proof)

An arc is defined as a flow between two locations and plants can be located

in the same location. Hence, from property 2.2 and property 2.3, the assump-

tion of PSO has NP(S)“-—NP(S’),,-SI-""----------------'------"---*""“--"-"“--(311))

where s’ is the immediate successor of stage s and NP(s”),=~0 when stage s is

the last stage. The proposition is proved by using constraint (31b).
(i) First, we prove that constraint (31b) implies constraint (31a). Consider a

set of stages S’ such that S'={s/, s, ---, s, &, --- ,§'} where stage s' is the last
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stage and stage s’ is an immediate predecessor of stage s . From constraint
(31b), we have |

NP(s), < NP(S"), + 1<NP(s§ ), + 2 < --- < NP(Sj_r)ff+r=NP(S’._r)u+u
(s)—pu(s’™), which is, 0 < NP(s'), — NP(s), <u(s)—u(s™) where 1 <r<

i—1 | (32b)
With the original notation {s,a,b}, constraint (32b) becomes:

0<NP(s),—NP(b),<u(s)—u(b) (33b)
0<NP(s),<u(s) when b=the market (34b)
0<NP(a),—NP(s),<pu(a)—pu(s) (35b)

With NP(s),>0, constraint (33b), (34b) and (35b) reduce to constraint (31a).
(ii) Next, we prove that constraint (3la) implies constraint (31b). We only
need to prove that constraint (32b) implies constraint (31b). By setting §' =
s and s’ '=s’, NP(s),—NP(s"), < u(s) — u(s’) =1 Q.E.D.
[Note] If a = ¢ (b==¢) then, simply discard the expressions containing stage
a (stage b) in constraint (31a).

For each independent stage s (subproblem), we have a=b=¢ and hence
0<NP(s),<u(s). Hence Problem (SP) for stage s maintains the assumption
of PSO by setting =y (s) in its shortest paths. Naturally, it also gives a bet-
ter lower bound even with negative cycles.

4. Conclusions and Extensions

We suggets a procedure of decomposing a multi-stage dynamic location
problem with respect to stages. It turns out that the dimensions of item and
time period have no role in the process of decomposition. It also turns out
that the property of the integer variables Z, has no effect on the decompo-
sition procedure. The resulting subproblem (SP) is a typical single-stage dy-
namic location problem. Many efficient solution methods for this problem
have been developed, which satisfies a critical condition for a successful de-
composition, that is: the subprobem should be easy to solve.
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In order to finish the job, we have to develop a procedure that integrates

the solutions of the subproblems to find a final of problem (P) and to do
some empirical work that proves its efficiency.
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