• 제목/요약/키워드: Problem Decomposition

검색결과 586건 처리시간 0.03초

A Scalable Heuristic for Pickup-and-Delivery of Splittable Loads and Its Application to Military Cargo-Plane Routing

  • Park, Myoung-Ju;Lee, Moon-Gul
    • Management Science and Financial Engineering
    • /
    • 제18권1호
    • /
    • pp.27-37
    • /
    • 2012
  • This paper is motivated by a military cargo-plane routing problem which is a pickup-and-delivery problem in which load splits and node revisits are allowed (PDPLS). Although this recent evolution of a VRP-model enhances the efficiency of routing, a solution method is more of a challenge since the node revisits entail closed walks in modeling vehicle routes. For such a case, even a compact IP-formulation is not available and an effective method had been lacking until Nowak et al. (2008b) proposed a heuristic based on a tabu search. Their method provides very reasonable solu-tions as demonstrated by the experiments not only in their paper (Nowak et al., 2008b) but also in ours. However, the computation time seems intensive especially for the class of problems with dynamic transportation requests, including the military cargo-plane routing problem. This paper proposes a more scalable algorithm hybridizing a tabu search for pricing subproblem paused as a single-vehicle routing problem, with a column generation approach based on Dantzig-Wolfe decomposition. As tested on a wide variety of instances, our algorithm produces, in average, a solution of an equiva-lent quality in 10~20% of the computation time of the previous method.

DWT/RDWT/SVD에 기반한 특이벡터를 사용한 블라인드 워터마킹 방안 (A Blind Watermarking Scheme Using Singular Vector Based On DWT/RDWT/SVD)

  • 융 녹 투이 덩;손원
    • 방송공학회논문지
    • /
    • 제21권2호
    • /
    • pp.149-156
    • /
    • 2016
  • 우리는 컨텐츠 복제방지를 위하여 기존의 SVD와 DWT/RDWT를 결합한 워터마킹 시스템에 특이벡터를 추가로 사용하는 방안을 제안하였다. 우리는 SVD를 사용하는 워터마킹 시스템에 존재하는 오류긍정문제(false-positive problem)를 극복하기 위하여 기존의 SVD기반 알고리즘과 같이 특이값에 워트마크를 임베딩할 뿐만 아니라, 커버이미지의 첫 번째 좌/우 특이벡터를 워터마크 이미지의 첫번째 좌/우 특이벡터와 교체하였다. 제안 방안은 오류긍정문제 (false-positive problem)가 발생하지 않는 워터마킹 시스템을 구현할 수 있었으며, 기존의 오류긍정문제가 없는 시스템과 비교하여 우수한 충실성과 강인성을 보여 주었을 뿐만 아니라, 오류긍정문제가 발생하는 시스템에 비해서도 크게 성능차이가 나지 않음을 보여 주었다.

Structural parameter estimation combining domain decomposition techniques with immune algorithm

  • Rao, A. Rama Mohan;Lakshmi, K.
    • Smart Structures and Systems
    • /
    • 제8권4호
    • /
    • pp.343-365
    • /
    • 2011
  • Structural system identification (SSI) is an inverse problem of difficult solution. Currently, difficulties lie in the development of algorithms which can cater to large size problems. In this paper, a parameter estimation technique based on evolutionary strategy is presented to overcome some of the difficulties encountered in using the traditional system identification methods in terms of convergence. In this paper, a non-traditional form of system identification technique employing evolutionary algorithms is proposed. In order to improve the convergence characteristics, it is proposed to employ immune algorithms which are proved to be built with superior diversification mechanism than the conventional evolutionary algorithms and are being used for several practical complex optimisation problems. In order to reduce the number of design variables, domain decomposition methods are used, where the identification process of the entire structure is carried out in multiple stages rather than in single step. The domain decomposition based methods also help in limiting the number of sensors to be employed during dynamic testing of the structure to be identified, as the process of system identification is carried out in multiple stages. A fifteen storey framed structure, truss bridge and 40 m tall microwave tower are considered as a numerical examples to demonstrate the effectiveness of the domain decomposition based structural system identification technique using immune algorithm.

음함수 곡면기법과 영역 분할법을 이용한 대형 폴리곤 모델의 홀 메움에 관한 연구 (A Study on Filling Holes of Large Polygon Model using Implicit Surface Scheme and Domain Decomposition Method)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.174-184
    • /
    • 2006
  • In order to fill the holes with complex shapes in the large polygon model, a new approach which is based on the implicit surface interpolation method combined with domain decomposition method is presented. In the present study, a surface is constructed by creating smooth implicit surface from the incomplete polygon model through which the surface should pass. In the method an implicit surface is defined by a radial basis function, a continuous scalar-valued function over the domain $R^3$ The generated surface is the set of all points at which this scalar function takes on the value zero and is created by placing zero-valued constraints at the vertices of the polygon model. In this paper the well-known domain decomposition method is used in order to treat the large polygon model. The global domain of interest is divided into smaller domains where the problem can be solved locally. LU decomposition method is used to solve a set of small local problems and their local solutions are combined together using the weighting coefficients to obtain a global solution. In order to show the validity of the present study, various hole fillings are carried out fur the large and complex polygon model of arbitrary topology.

Decomposition of Interference Hyperspectral Images Based on Split Bregman Iteration

  • Wen, Jia;Geng, Lei;Wang, Cailing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3338-3355
    • /
    • 2018
  • Images acquired by Large Aperture Static Imaging Spectrometer (LASIS) exhibit obvious interference stripes, which are vertical and stationary due to the special imaging principle of interference hyperspectral image (IHI) data. As the special characteristics above will seriously affect the intrinsic structure and sparsity of IHI, decomposition of IHI has drawn considerable attentions of many scientists and lots of efforts have been made. Although some decomposition methods for interference hyperspectral data have been proposed to solve the above problem of interference stripes, too many times of iteration are necessary to get an optimal solution, which will severely affect the efficiency of application. A novel algorithm for decomposition of interference hyperspectral images based on split Bregman iteration is proposed in this paper, compared with other decomposition methods, numerical experiments have proved that the proposed method will be much more efficient and can reduce the times of iteration significantly.

특이값분해 기반 동적의료영상 재구성기법의 특징 파악을 위한 시뮬레이션 연구 (Simulation Study for Feature Identification of Dynamic Medical Image Reconstruction Technique Based on Singular Value Decomposition)

  • 김도휘;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권2호
    • /
    • pp.119-130
    • /
    • 2019
  • Positron emission tomography (PET) is widely used imaging modality for effective and accurate functional testing and medical diagnosis using radioactive isotopes. However, PET has difficulties in acquiring images with high image quality due to constraints such as the amount of radioactive isotopes injected into the patient, the detection time, the characteristics of the detector, and the patient's motion. In order to overcome this problem, we have succeeded to improve the image quality by using the dynamic image reconstruction method based on singular value decomposition. However, there is still some question about the characteristics of the proposed technique. In this study, the characteristics of reconstruction method based on singular value decomposition was estimated over computational simulation. As a result, we confirmed that the singular value decomposition based reconstruction technique distinguishes the images well when the signal - to - noise ratio of the input image is more than 20 decibels and the feature vector angle is more than 60 degrees. In addition, the proposed methode to estimate the characteristics of reconstruction technique can be applied to other spatio-temporal feature based dynamic image reconstruction techniques. The deduced conclusion of this study can be useful guideline to apply medical image into SVD based dynamic image reconstruction technique to improve the accuracy of medical diagnosis.

최적분해법에 의한 최단경로계산 (Shortest paths calculation by optimal decomposition)

  • 이장규
    • 전기의세계
    • /
    • 제30권5호
    • /
    • pp.297-305
    • /
    • 1981
  • The problem of finding shortest paths between every pair of points in a network is solved employing and optimal network decomposition in which the network is decomposed into a number of subnetworks minimizing the number of cut-set between them while each subnetwork is constrained by a size limit. Shortest path computations are performed on individual subnetworks, and the solutions are recomposed to obtain the solution of the original network. The method when applied to large scale networks significantly reduces core requirement and computation time. This is demonstrated by developing a computer program based on the method and applying it to 30-vertex, 160-vertex, and 273-vertex networks.

  • PDF

BOUNDARY COLLOCATION FAST POISSON SOLVER ON IRREGULAR DOMAINS

  • Lee, Dae-Shik
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.27-44
    • /
    • 2001
  • A fast Poisson solver on irregular domains, based on bound-ary methods, is presented. The harmonic polynomial approximation of the solution of the associated homogeneous problem provides a good practical boundary method which allows a trivial parallel processing for solution evaluation or straightfoward computations of the interface values for domain decomposition/embedding. AMS Mathematics Subject Classification : 65N35, 65N55, 65Y05.

ON DIFFERENTIABILITY OF THE MATRIX TRACE OPERATOR AND ITS APPLICATIONS

  • Dulov, E.V.;Andrianova, N.A.
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.97-109
    • /
    • 2001
  • This article is devoted to “forgotten” and rarely used technique of matrix analysis, introduced in 60-70th and enhanced by authors. We will study the matrix trace operator and it’s differentiability. This idea generalizes the notion of scalar derivative for matrix computations. The list of the most common derivatives is given at the end of the article. Additionally we point out a close connection of this technique with a least square problem in it’s classical and generalized case.

Enhanced Algorithms for Reliability Calculation of Complex System

  • Lee, Seong Cheol
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권2호
    • /
    • pp.121-135
    • /
    • 1999
  • This paper studies the problem of inverting minimal path sets to obtain minimal cut sets for complex system. We describe efficiency of inversion algorithm by the use of boolean algebra and we develop inclusion-exclusion algorithm and pivotal decomposition algorithm for reliability calculation of complex system. Several examples are illustrated and the computation speeds between the two algorithms are undertaken.

  • PDF