• 제목/요약/키워드: Problem Decomposition

검색결과 586건 처리시간 0.026초

벡터 분해 문제의 어려움에 대한 분석 (Analysis for the difficulty of the vector decomposition problem)

  • 권세란;이향숙
    • 정보보호학회논문지
    • /
    • 제17권3호
    • /
    • pp.27-33
    • /
    • 2007
  • 최근 M.Yoshida 등에 의해 2차원 벡터 공간상의 벡터 분해 문제 (vector decomposition problem 또는 VDP) 가 제안되었고, 그것은 어떤 특별한 조건하에서는 최소한 1차원 부분공간상의 계산적 Diffie-Hellman 문제 (CDHP) 보다 어렵다는 것이 증명되었다. 하지만 그들의 증명이, VDP를 암호학적 프로토콜 설계에 적용하려면 필요한 조건인 벡터 공간상의 주어진 기저에 관한 임의의 벡터의 벡터 분해 문제가 어렵다는 것을 보이는 것은 아니다. 본 논문에서는 비록 어떤 2차원 벡터 공간이 M.Yoshida 등이 제안한 특별한 조건을 만족한다 할지라도, 특정한 모양의 기저에 관해서는 벡터 분해 문제가 다항식 시간 안에 해결될 수 있다는 것을 보여준다. 또한 우리는 다른 구조를 갖는 어떠한 기저들에 대해서는 그 2차원 벡터 공간 상의 임의의 벡터에 대한 벡터 분해 문제가 적어도 CBHP 만큼 어렵다는 것을 증명한다. 그러므로 벡터 분해 문제를 기반이 되는 어려운 문제로 하는 암호학적인 프로토콜을 수행할 때는 기저를 주의하여 선택하여야 한다.

제어규칙 분해법을 이용한 다변수 퍼지 논리 제어기 (Multivariable Fuzzy Logic Controller using Decomposition of Control Rules)

  • 이평기
    • 한국산업융합학회 논문집
    • /
    • 제9권3호
    • /
    • pp.173-178
    • /
    • 2006
  • For the design of multivariable fuzzy control systems decomposition of control rules is a efficent inference method since it alleviates the complexity of the problem. In some systems, however, inference error of the Gupta's decomposition method is inevitable because of its approximate nature. In this paper we define indices of applicability which decides whether the decomposition method can be applied to a multivariable fuzzy system or not.

  • PDF

분할법을 이용한 최적 무효전력 설비계획 (Optimal Reactive Power Planning Using Decomposition Method)

  • 김정부;정동원;김건중;박영문
    • 대한전기학회논문지
    • /
    • 제38권8호
    • /
    • pp.585-592
    • /
    • 1989
  • This paper presents an efficient algorithm for the reactive planning of transmission network under normal operating conditions. The optimal operation of a power system is a prerequisite to obtain the optimal investment planning. The operation problem is decomposed into a P-optimization module and a Q-optimization module, but both modules use the same objective function of generation cost. In the investment problem, a new variable decomposition technique is adopted which can operate the operation and the investment variables. The optimization problem is solved by using the gradient projection method (GPM).

  • PDF

교통흐름의 수학적 모형 (Mathematical Modeling for Traffic Flow)

  • 이성철
    • 대한안전경영과학회지
    • /
    • 제13권1호
    • /
    • pp.127-131
    • /
    • 2011
  • Even if there are no causing factors such as car crash and road works, traffic congestion come from traffic growth on the road. In this case, estimation of traffic flow helps find the solution of traffic congestion problem. In this paper, we present a optimization model which used on traffic equilibrium problem and studied the problem of inverting shortest path sets for complex traffic system. And we also develop pivotal decomposition algorithm for reliability function of complex traffic system. Several examples are illustrated.

최적화와 분할 방법을 이용한 항공기 표적 할당 연구 (A Study on Aircraft-Target Assignment Problem in Consideration of Deconfliction)

  • 이혁;이영훈;김선훈
    • 경영과학
    • /
    • 제32권1호
    • /
    • pp.49-63
    • /
    • 2015
  • This paper investigates an aircraft-target assignment problem in consideration of deconfliction. The aircraft-target assignment problem is the problem to assign available aircrafts and weapons to targets that should be attacked, where the objective function is to minimize the total expected damage of aircrafts. Deconfliction is the way of dividing airspaces for aircraft flight to ensure the safety while performing the mission. In this paper, mixed integer programming model is suggested, where it considers deconfliction between aircrafts. However, the suggested MIP model is non-linear and limited to get solution for large size problem. The 2-phase decomposition model is suggested for efficiency and computation, where in the first phase target area is divided into sectors for deconfliction and in the second phase aircrafts and weapons are assigned to given targets for minimizing expected damage of aircraft. The proposed decomposition model shows outperforms the model developed for comparison in the computational experiment.

행렬 분해와 공격자 구조를 이용한 비밀이미지 공유 기법 (Secret Image Sharing Scheme using Matrix Decomposition and Adversary Structure)

  • 현승일;신상호;유기영
    • 한국멀티미디어학회논문지
    • /
    • 제17권8호
    • /
    • pp.953-960
    • /
    • 2014
  • In Shamir's (t,n)-threshold based secret image sharing schemes, there exists a problem that the secret image can be reconstructed when an arbitrary attacker becomes aware of t secret image pieces, or t participants are malicious collusion. It is because that utilizes linear combination polynomial arithmetic operation. In order to overcome the problem, we propose a secret image sharing scheme using matrix decomposition and adversary structure. In the proposed scheme, there is no reconstruction of the secret image even when an arbitrary attacker become aware of t secret image pieces. Also, we utilize a simple matrix decomposition operation in order to improve the security of the secret image. In experiments, we show that performances of embedding capacity and image distortion ratio of the proposed scheme are superior to previous schemes.

A Robust Optimization Method Utilizing the Variance Decomposition Method for Electromagnetic Devices

  • Wang, Shujuan;Li, Qiuyang;Chen, Jinbao
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.385-392
    • /
    • 2014
  • Uncertainties in loads, materials and manufacturing quality must be considered during electromagnetic devices design. This paper presents an effective methodology for robust optimization design based on the variance decomposition in order to keep higher accuracy of the robustness prediction. Sobol' theory is employed to estimate the response variance under some specific tolerance in design variables. Then, an optimal design is obtained by adding a criterion of response variance upon typical optimization problems as a constraint of the optimization. The main contribution of this paper is that the proposed method applies the variance decomposition to obtain a more accurate variance of the response, as well save the computational cost. The performance and robustness of the proposed algorithms are investigated through a numerical experiment with both an analytic function and the TEAM 22 problem.

ADVANCED DOMAIN DECOMPOSITION METHOD BY LOCAL AND MIXED LAGRANGE MULTIPLIERS

  • Kwak, Junyoung;Chun, Taeyoung;Cho, Haeseong;Shin, Sangjoon;Bauchau, Olivier A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권1호
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents development of an improved domain decomposition method for large scale structural problem that aims to provide high computational efficiency. In the previous researches, we developed the domain decomposition algorithm based on augmented Lagrangian formulation and proved numerical efficiency under both serial and parallel computing environment. In this paper, new computational analysis by the proposed domain decomposition method is performed. For this purpose, reduction in computational time achieved by the proposed algorithm is compared with that obtained by the dual-primal FETI method under serial computing condition. It is found that the proposed methods significantly accelerate the computational speed for a linear structural problem.

Reliability analysis of wind-excited structures using domain decomposition method and line sampling

  • Katafygiotis, L.S.;Wang, Jia
    • Structural Engineering and Mechanics
    • /
    • 제32권1호
    • /
    • pp.37-53
    • /
    • 2009
  • In this paper the problem of calculating the probability that the responses of a wind-excited structure exceed specified thresholds within a given time interval is considered. The failure domain of the problem can be expressed as a union of elementary failure domains whose boundaries are of quadratic form. The Domain Decomposition Method (DDM) is employed, after being appropriately extended, to solve this problem. The probability estimate of the overall failure domain is given by the sum of the probabilities of the elementary failure domains multiplied by a reduction factor accounting for the overlapping degree of the different elementary failure domains. The DDM is extended with the help of Line Sampling (LS), from its original presentation where the boundary of the elementary failure domains are of linear form, to the current case involving quadratic elementary failure domains. An example involving an along-wind excited steel building shows the accuracy and efficiency of the proposed methodology as compared with that obtained using standard Monte Carlo simulations (MCS).

단일품목 동적 롯트량결정에 대한 이론적 고찰과 적용 (Single-prodect dynamic lot-sizing : review and extension)

  • 김형욱;김상천;현재호
    • 경영과학
    • /
    • 제5권1호
    • /
    • pp.56-70
    • /
    • 1988
  • In this study, We reviewed the solution methods (for the heuristic and optimization method) for the single-item dynamic lot-sizing problem, and improved the efficiency (speed and optimality) of the conventional heuristic method by utilizing the inventory decomposition property. The iventory decomposition property decomposes the given original problem into several independent subproblems without violating the optimality conditions. Then we solve each decomposed subproblems by using the conventional heuristics such as LTC, LUC, Silver-Meal etc. For testing the efficiency of the proposed decomposition method, we adopted the data sets given in Kaimann, Berry and Silver-Meal. The computational results show that the suggested problem solving framework results in some promising effects on the computation time and the degree of optimality.

  • PDF