Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.4.385

A Robust Optimization Method Utilizing the Variance Decomposition Method for Electromagnetic Devices  

Wang, Shujuan (Department of Electrical Engineering, Harbin Institute of Technology)
Li, Qiuyang (Department of Electrical Engineering, Harbin Institute of Technology)
Chen, Jinbao (Department of Electrical Engineering, Harbin Institute of Technology)
Publication Information
Abstract
Uncertainties in loads, materials and manufacturing quality must be considered during electromagnetic devices design. This paper presents an effective methodology for robust optimization design based on the variance decomposition in order to keep higher accuracy of the robustness prediction. Sobol' theory is employed to estimate the response variance under some specific tolerance in design variables. Then, an optimal design is obtained by adding a criterion of response variance upon typical optimization problems as a constraint of the optimization. The main contribution of this paper is that the proposed method applies the variance decomposition to obtain a more accurate variance of the response, as well save the computational cost. The performance and robustness of the proposed algorithms are investigated through a numerical experiment with both an analytic function and the TEAM 22 problem.
Keywords
robust optimization; variance decomposition; electromagnetic device; TEAM 22 problem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Sathyanarayanamurthy and R. B. Chinnam, Comput. Ind. Eng. 57, 996 (2009).   DOI   ScienceOn
2 T. J. Harris and W. Yu, J. Process Contr. 20, 195 (2010).   DOI   ScienceOn
3 P. S. Shim, S. H. Woo, and C. S. Koh, IEEE Trans. Magn. 45, 1214 (2009).   DOI   ScienceOn
4 G. L. Soares, R. L. S. Adriano, C. A. Maia, L. Jaulin, and J. A. Vasconcelos, IEEE Trans. Magn. 45, 1028 (2009).   DOI   ScienceOn
5 K. L. Tsui, IIE Trans. 24, 44 (1992).   DOI   ScienceOn
6 Z. Ren, M. T Pham, M. Song, D. H. Kim, and C. S. Koh, IEEE Trans. Magn. 47, 1254 (2011).   DOI   ScienceOn
7 Y. Yao, J. S. Ryu, C. S. Koh, and D. Xie, IEEE Trans. Magn. 40, 1200 (2004).   DOI   ScienceOn
8 Z. Ren, D. Zhang, and C. S. Koh, IEEE Trans. Magn. 49, 2109 (2013).   DOI   ScienceOn
9 J. H. Ko, J. K. Byun, J. S. Park, and H. S. Kim, IEEE Trans. Magn. 47, 1258 (2011).   DOI   ScienceOn
10 X. J. Lu, H. X. Li, and C. L. Philip Chen, J. Mech. Des. 132, 064502 (2010).   DOI   ScienceOn
11 A. Ambrisi, A. Formisano, and R. Martone, IEEE Trans. Magn. 46, 2747 (2010).   DOI   ScienceOn
12 A. Saltelli, S. Tarantola, and K. P.-S. Chan, Technometrics 41, 39 (1999).   DOI   ScienceOn
13 I. M. Sobol, Math. Comput. Simul. 55, 271 (2001).   DOI   ScienceOn
14 S. R. Arwade, M. Moradi, and A. Louhghalam, Eng. Struct. 32, 1 (2010).   DOI   ScienceOn
15 E. Quaglietta and V. Punzo, Transport. Res. C-EMER 34, 38 (2013).   DOI   ScienceOn
16 N. K. Kim, D. H. Kim, D. W. Kim, H. G. Kim, D. A. Lowther, and J. K. Sykulski, IEEE Trans. Magn. 46, 3117 (2010).   DOI   ScienceOn
17 S. L. Ho, S. Y. Yang, P. H. Ni, and K. F. Wong, IEEE Trans. Magn. 43, 1593 (2007).   DOI   ScienceOn