• Title/Summary/Keyword: Probe current control

Search Result 60, Processing Time 0.03 seconds

Multipoint Process Monitoring System Based on a Near Infrared Ray(NIR) Acousto-Optic Tunable Filter(AOTF)

  • You, Jang-Woo;Kim, Daesuk;Kim, Soohyun;Kong, Hong-Jin;Lee, Yunwoo;Kwak, Yoon-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.105.4-105
    • /
    • 2001
  • This paper describes a newly designed multipoint process monitoring system based on a NIR acousto-optic tunable filter. The NIR multipoint process monitoring system consists of a NIR AOTF device for wavelength selection, an InGaAs array sensor, and a specially designed iin-line type of optical fiber probe. Unlike a FTS(Fourier Transform Spectrometry) or grating based monitoring system, an AOTF has no moving parts, and it can be rapidly tuned to any wavelength in its operating range within microseconds. Thus, the AOTF is advantageous in terms of faster spectral imaging capability and rigidity required for industrial monitoring environment. In the current feasibility evaluation, an enhanced optical fiber probe with 3 monitoring points was used. However, ...

  • PDF

Development of the DC-RF Hybrid Plasma Source

  • Kim, Ji-Hun;Cheon, Se-Min;Gang, In-Je;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.213-213
    • /
    • 2011
  • DC arc plasmatron is powerful plasma source to apply etching and texturing processing. Even though DC arc plasmatron has many advantages, it is difficult to apply an industry due to the small applied area. To increase an effective processing area, we suggest a DC-RF hybrid plasma system. The DC-RF hybrid plasma system was designed and made. This system consists of a DC arc plasmatron, RF parts, reaction chamber, power feeder, gas control system and vacuum system. To investigate a DC-RF hybrid plasma, we used a Langmuir probe, OES (Optical emission spectroscopy), infrared (IR) light camera. For RF matching, PSIM software was used to simulate a current of an impedance coil. The results of Langmuir probe measurements, we obtain a homogeneous plasma density and electron temperature those are about $1{\times}1010$ #/cm3 and 1~4 eV. The DC-RF hybrid plasma source is applied for plasma etching experimental, and we obtain an etching rate of 10 ${\mu}m$/min. through a 90 mm of reaction chamber diameter.

  • PDF

Electrochemical Detection of Single Nucleotide Polymorphism (SNP) Using Microelectrode Array on a DNA Chip (미소전극어레이형 DNA칩을 이용한 유전자다형의 전기화학적 검출)

  • 최용성;권영수;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.286-292
    • /
    • 2004
  • In this study, an integrated microelectrode array was fabricated on glass slide using microfabrication technology. Probe DNAs consisting of mercaptohexyl moiety at their 5-end were spotted on the gold electrode using micropipette or DNA arrayer utilizing the affinity between gold and sulfur. Cyclic voltammetry in 5mM ferricyanide/ferrocyanide solution at 100 ㎷/s confirmed the immobilization of probe DNA on the gold electrodes. When several DNAs were detected electrochemically, there was a difference between target DNA and control DNA in the anodic peak current values. It was derived from specific binding of Hoechst 33258 to the double stranded DNA due to hybridization of target DNA. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic System.

A Study on Electrical Properties of Dendrimer (미소전극형 DNA칩 어레이를 이용한 유전자의 검출)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1324-1326
    • /
    • 2006
  • In this study, an integrated microelectrode array was fabricated on glass slide using microfabrication technology. Probe DNAs consisting of mercaptohexyl moiety at their 5-end were spotted on the gold electrode using micropipette or DNA arrayer utilizing the affinity between gold and sulfur. Cyclic voltammetry in 5mM ferricyanide/ferrocyanide solution at 100 mV/s confirmed the immobilization of probe DNA on the gold electrodes. When several DNAs were detected electrochemically, there was a difference between target DNA and control DNA in the anodic peak current values. It was derived from specific binding of Hoechst 33258 to the double stranded DNA due to hybridization of target DNA. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic system.

  • PDF

Genome Detection Using an DNA Chip Array and Non-labeling DNA (비수식화 바이오칩 및 유전자 검출)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.402-403
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Effect of Electroplating Parameters on Conductivity and Hardness of Ni-P Alloy (Ni-P 합금의 전기전도도와 경도에 대한 도금 조건의 영향)

  • Kim, Nam-Gil;Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.77-81
    • /
    • 2017
  • Pulse electroplating of Ni-P alloy was studied to fulfill the material requirement to the advanced vertical probe tip in wafer probe card. The major concerns are for the electrical conductivity and yield strength. Plating parameters such as current density, duty cycle and solution components were examined to obtain the nanocrystal structure and proper percentage of phosphorus, leading to how to control the nanocrystal grain growth and precipitation of $Ni_3P$ after heat treatment. Among the parameters, the amount of phosphorus acid was the main factor affecting on the grain size and sheet resistance, and the amount of 0.1 gram was appropriate. Since hardness in Ni-P alloy is increased by as-plated nanocrystal structure plus precipitation of $Ni_3P$, the concentration of P less than 15 at% was better choice for the grain coarsening without minus in hardness value. The following heat treatment made grain growth and dispersion of precipitates adjustable to meet the target limit of resistance of $100m{\Omega}$ and hardness number of over 1000Hv. The Ni-P alloy will be a candidate for the substitute of the conventional probe tip material.

Development of a low energy ion irradiation system for erosion test of first mirror in fusion devices

  • Kihyun Lee;YoungHwa An;Bongki Jung;Boseong Kim;Yoo kwan Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.70-77
    • /
    • 2024
  • A low energy ion irradiation system based on the deuterium arc ion source with a high perveance of 1 µP for a single extraction aperture has been successfully developed for the investigation of ion irradiation on plasma-facing components including the first mirror of plasma optical diagnostics system. Under the optimum operating condition for mirror testing, the ion source has a beam energy of 200 eV and a current density of 3.7 mA/cm2. The ion source comprises a magnetic cusp-type plasma source, an extraction system, a target system with a Faraday cup, and a power supply control system to ensure stable long time operation. Operation parameters of plasma source such as pressure, filament current, and arc power with D2 discharge gas were optimized for beam extraction by measuring plasma parameters with a Langmuir probe. The diode electrode extraction system was designed by IGUN simulation to optimize for 1 µP perveance. It was successfully demonstrated that the ion beam current of ~4 mA can be extracted through the 10 mm aperture from the developed ion source. The target system with the Faraday cup is also developed to measure the beam current. With the assistance of the power control system, ion beams are extracted while maintaining a consistent arc power for more than 10 min of continuous operation.

A Study on the Autonomous Navigation of Rovers for Mars Surface Exploration

  • Kim, Han-Dol;Kim, Byung-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.38.3-38
    • /
    • 2001
  • In the planetary surface exploration , micro-rovers or nano-rovers are very attractive choices for a surface exploration system providing mobility functions and other features required in the surface probe missions at small mass and relatively small cost. This paper surveys and summarizes the requirements for Mars exploration rovers in micro or nano scale and outlines the control concepts for navigation including the obstacle/hazard avoidance and the path planning. In this context, autonomous reaction capabilities are the key elements to control design in conjunction with the remote control schemes to deal with the significant signal propagation delays. Other navigation and control aspects such as the instrument fine positioning and the flip-over of the rovers are also briefly introduced. The current technical limitations of the micro- and nano-rovers are summarized.

  • PDF

Characterization of Electrical Properties of Si Nanocrystals Embedded in a SiO$_{2}$ Layer by Scanning Probe Microscopy (Scanning Probe Microscopy를 이용한 국소영역에서의 실리콘 나노크리스탈의 전기적 특성 분석)

  • Kim, Jung-Min;Her, Hyun-Jung;Kang, Chi-Jung;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.438-442
    • /
    • 2005
  • Si nanocrystal (Si NC) memory device has several advantages such as better retention, lower operating voltage, reduced punch-through and consequently a smaller cell area, suppressed leakage current. However, the physical and electrical reasons for this behavior are not completely understood but could be related to interface states of Si NCs. In order to find out this effect, we characterized electrical properties of Si NCs embedded in a SiO$_{2}$ layer by scanning probe microscopy (SPM). The Si NCs were generated by the laser ablation method with compressed Si powder and followed by a sharpening oxidation. In this step Si NCs are capped with a thin oxide layer with the thickness of 1$\~$2 nm for isolation and the size control. The size of 51 NCs is in the range of 10$\~$50 m and the density around 10$^{11}$/cm$^{2}$ It also affects the interface states of Si NCs, resulting in the change of electrical properties. Using a conducting tip, the charge was injected directly into each Si NC, and the image contrast change and dC/dV curve shift due to the trapped charges were monitored. The results were compared with C-V characteristics of the conventional MOS capacitor structure.

In Situ Sensing of Copper-plating Thickness Using OPD-regulated Optical Fourier-domain Reflectometry

  • Nayoung, Kim;Do Won, Kim;Nam Su, Park;Gyeong Hun, Kim;Yang Do, Kim;Chang-Seok, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Optical Fourier-domain reflectometry (OFDR) sensors have been widely used to measure distances with high resolution and speed in a noncontact state. In the electroplating process of a printed circuit board, it is critically important to monitor the copper-plating thickness, as small deviations can lead to defects, such as an open or short circuit. In this paper we employ a phase-based OFDR sensor for in situ relative distance sensing of a sample with nanometer-scale resolution, during electroplating. We also develop an optical-path difference (OPD)-regulated sensing probe that can maintain a preset distance from the sample. This function can markedly facilitate practical measurements in two aspects: Optimal distance setting for high signal-to-noise ratio OFDR sensing, and protection of a fragile probe tip via vertical evasion movement. In a sample with a centimeter-scale structure, a conventional OFDR sensor will probably either bump into the sample or practically out of the detection range of the sensing probe. To address this limitation, a novel OPD-regulated OFDR system is designed by combining the OFDR sensing probe and linear piezo motors with feedback-loop control. By using multiple OFDR sensors, it is possible to effectively monitor copper-plating thickness in situ and uniformize it at various positions.