• Title/Summary/Keyword: Probe Tip

Search Result 218, Processing Time 0.027 seconds

Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography (비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Kim, Tack-Hyun;Park, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

Design & development of a device for thin-film evaluation using a two-component loadcell (2축 로드셀을 이용한 박막평가장치의 설계 및 개발)

  • Lee, Jeong-Il;Kim, Jong-Ho;Park, Yon-Kyu;Oh, Hee-Geun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1448-1452
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin-film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the tangential forces simultaneously as the probe tip of the equipment approaches to the interface between thin-film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ${\sim}$ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester, the feasibility test was performed to evaluate the adhesive strength of thin-film.

  • PDF

Analysis and Control f Contact Mode AFM (접촉모드 AFM의 시스템 분석 및 제어)

  • 정회원;심종엽;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • Recently, scientists introduced a new type of microscope capable of investigating nonconducting surfaces in an atomic scale, which is called AFM (Atomic Force Microscope). It was an innovative attempt to overcome the limitation of STM (Scanning Tunnelling Microscope) which has been able to obtain the image of conducting surfaces. Surfaces of samples are imaged with atomic resolution. The AFM is an imaging tool or a profiler with unprecedented 3-D resolution for various surface types. The AFM technology, however, leaves a lot of room for improvement due to its delicate and fragile probing mechanism. One of the room for improvements is gap control between probe tip and sample surface. Distance between probe tip and sample surface must be kept in below one Angtrom in order to measure the sample surface in Angstrom resolution. In this paper, AFM system modeling, experimental system identification and control scheme based on system identification are performed and finally sample surface is measured by home-built AFM with such a control scheme.

  • PDF

Effect of Contact Conditions on the Micro-adhesion Characteristics using SPM (SPM을 이용한 접촉조건 변화에 따른 미소응착 특성 연구)

  • 윤의성;박지현;양승호;공호성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.18-22
    • /
    • 2000
  • An experimental study was carried out to investigate the effect of nano-contact condition on the nano-adhesion phenomena. SPM(scanning probe microscope) tips with different radius of curvature were fabricated by a series of masking and etching processes. DLC(diamond-like carbon) and W-DLC (tungsten-incorporated diamond-like carbon) were coated on (100) silicon wafer by PACVD(plasma assisted chemical vapor deposition). Pull-off forces of Pure Si-wafer, DLC and W-DLC were measured with SPM(scanning probe microscope). Also, the same series of tests were carried out with the tips with different radius of curvature. Results showed that DLC and W-DLC showed much lower pull-off force than Si-wafer and Pull-off force increased with the tip radius.

  • PDF

Effect of Electroplating Parameters on Conductivity and Hardness of Ni-P Alloy (Ni-P 합금의 전기전도도와 경도에 대한 도금 조건의 영향)

  • Kim, Nam-Gil;Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.77-81
    • /
    • 2017
  • Pulse electroplating of Ni-P alloy was studied to fulfill the material requirement to the advanced vertical probe tip in wafer probe card. The major concerns are for the electrical conductivity and yield strength. Plating parameters such as current density, duty cycle and solution components were examined to obtain the nanocrystal structure and proper percentage of phosphorus, leading to how to control the nanocrystal grain growth and precipitation of $Ni_3P$ after heat treatment. Among the parameters, the amount of phosphorus acid was the main factor affecting on the grain size and sheet resistance, and the amount of 0.1 gram was appropriate. Since hardness in Ni-P alloy is increased by as-plated nanocrystal structure plus precipitation of $Ni_3P$, the concentration of P less than 15 at% was better choice for the grain coarsening without minus in hardness value. The following heat treatment made grain growth and dispersion of precipitates adjustable to meet the target limit of resistance of $100m{\Omega}$ and hardness number of over 1000Hv. The Ni-P alloy will be a candidate for the substitute of the conventional probe tip material.

Nanomanipulation and Nanomanufacturing based on Ion Trapping and Scanning Probe Microscopy (SPM)

  • Kim, Dong-Whan;Tae, Won-Si;Yeong, Maeng-Hui;K. L. Ekinci
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.530-537
    • /
    • 2004
  • Development of a versatile nanomanipulation tool is an overarching theme in nanotechnology. Such a tool will likely revolutionize the field given that it will enable fabrication and operation of a wealth of interesting nanodevices. This study seeks funding to create a novel nanomanipulation system with the ultimate goal of using this system for nanomanufacturing at the molecular level. The proposed design differs from existing approaches. It is based on a nanoscale ion trap integrated to a scanning prove microscope (SPM) tip. In this design, molecules to be assembled will be ionized and collected in the nanoscale ion trap all in an ultra high vacuum (UHV) environment. Once filled with the molecular ions, the nanoscale ion trap-SPM tip will be moved on a substrate surface using scanning probe microscopy techniques. The molecular ions will be placed at their precise locations on the surface. By virtue of the SPM, the devices that are being nanomanufactured will be imaged in real time as the molecular assembly process is carried out. In the later stages, automation of arrays of these nanomanipulators will be developed.

  • PDF

Terabit-per-square-inch Phase-change Recording on Ge-Sb-Te Media with Protective Overcoatings

  • Shin Jin-Koog;Lee Churl Seung;Suh Moon-Suk;Lee Kyoung-Il
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.185-189
    • /
    • 2005
  • We reported here nano-scale electrical phase-change recording in amorphous $Ge_2Sb_2Te_5$ media using an atomic force microscope (AFM) having conducting probes. In recording process, a pulse voltage is applied to the conductive probe that touches the media surface to change locally the electrical resistivity of a film. However, in contact operation, tip/media wear and contamination could major obstacles, which degraded SNR, reproducibility, and lifetime. In order to overcome tip/media wear and contamination in contact mode operation, we adopted the W incorporated diamond-like carbon (W-DLC) films as a protective layer. Optimized mutilayer media were prepared by a hybrid deposition system of PECVD and RF magnetron sputtering. When suitable electrical pulses were applied to media through the conducting probe, it was observed that data bits as small as 25 nm in diameter have been written and read with good reproducibility, which corresponds to a data density of $1 Tbit/inch^2$. We concluded that stable electrical phase-change recording was possible mainly due to W-DLC layer, which played a role not only capping layer but also resistive layer.

  • PDF

Thermo-Piezoelectric Read/Write Mechanisms for Probe-Based Data Storage

  • Nam, Hyo-Jin;Kim, Young-Sik;Lee, Sun-Yong;Jin, Won-Hyeog;Jang, Seong-Soo;Cho, Il-Joo;Bu, Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • In this paper, a thermo-piezoelectric mechanism with integrated heaters and piezoelectric sensors has been studied for low power probe-based data storage. Silicon nitride cantilever integrated with silicon heater and piezoelectric sensor has been developed to improve the uniformity of cantilevers. Data bits of 40 nm in diameter were recorded on PMMA film. The sensitivity of the piezoelectric sensor was 0.615 fC/nm after poling the PZT layer. And, the $34\times34$ probe array integrated with CMOS circuits has been successfully developed by simple one-step bonding process. The process can simplify the process step and reduce tip wear using silicon nitride tip.

  • PDF

Polarization State of Scattered Light in Apertureless Reflection-mode Scanning Near-Field Optical Microscopy

  • Cai, Yongfu;Aoyagi, Mitsuharu;Emoto, Akira;Shioda, Tatsutoshi;Ishibashi, Takayuki
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.317-320
    • /
    • 2013
  • We studied the polarization state in an apertureless scanning near-field microscopy (a-SNOM) operating in reflection mode by using three-dimensional Finite-difference Time-domain (FDTD) method. As a result, the electric field around tip apex in the near-field region enhanced four times stronger than the incident light for ppolarization when the tip-sample separation was 10 nm. We find that the p- and s-polarization state is maintained for the scattered light when the probe is perpendicular to the sample. When the probe is not perpendicular to the sample, the polarization state of scattered light will rotate an angle that equals to the inclination angle of probe with p-polarization illumination. On the other hand, the polarization state will not rotate with s-polarization illumination.

Experimental Study on Tip Clearance Effects for Performance Characteristics of Ducted Fan

  • Raza, Iliyas;Choi, Hyun-Min;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.395-398
    • /
    • 2009
  • Currently, a new generation of ducted fan UAVs (Unmanned Aerial Vehicles) is under development for a wide range of inspection, investigation and combat missions as well as for a variety of civil roles like traffic monitoring, meteorological studies, hazard mitigation etc. The current study presents extensive results obtained experimentally in order to investigate the tip clearance effects on performance characteristics of a ducted fan for small UAV systems. Three ducted fans having different tip clearance gap and with same rotor size were examined under three different yawed conditions of calibrated slanted hot-wire probe. Three dimensional velocity flow fields were measured from hub to tip at outlet of the ducted fan. The analysis of data were done by PLEAT (Phase locked Ensemble Averaging Technique) and three non-linear differential equations were solved simultaneously by using Newton -Rhapson numerical method. Flow field characteristics such as tip vortex and secondary flow were confirmed through axial, radial and tangential velocity contour plots. At the same time, the effects of tip clearance on axial thrust and input power were also investigated by using wind tunnel measurement system. For enhancing the performance of ducted fan, tip clearance level should be as small as possible.

  • PDF