• Title/Summary/Keyword: Probability of Kill

Search Result 51, Processing Time 0.02 seconds

(A Study on the Guided Missile Performance Model and the Development of Visual Environments) (유도무기 살상효과 산정 모델 및 시각 환경의 개발)

  • 황흥석;정덕길
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • This research investigates a kill probability model for the performance evaluation of guided missile system, and also develops the user interface implementation for the output of the model based on the visual object-oriented programming application. This paper describes in detail the methodology for the kill probability attained by a missile warhead detonating near an airborne target. The major simulation events used in this research are missile guidance homing point, burst points, and kill mechanism(direct kill, blast kill and fragment kill). For the user interface, we also design and implement the visualization system that can show the graphic style of the kill probability attained by the model. This research will bridge the gap between the sophisticated kill probability model and users who want to see the results interactively with visualization, which can benefit many of other military systems. Some examples are shown, but these will be improved to be better with visual simulation which can visualize all the simulation process of the model.

  • PDF

Development of Graphical User Interface for MANPAD Missile Performance Evaluation (휴대용 미사일의 성능평가를 위한 시각화모델의 개발)

  • 황흥석
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.2
    • /
    • pp.28-38
    • /
    • 2000
  • This research investigates a kill probability model for the performance evaluation of guided missile system, and also develops graphical user interface for the input and output of the model based on the visual object-oriented programming application. The major simulation events used in this research are missile guidance homing point, burst points, and kill mechanism(direct kill, blast kill and fragment kill). For the user interface, we also design and implement the visualization system that can show the graphic style of the kill probability attained by the model. The results of sample run are shown, but these could be improved to be better with visual simulation which can visulaize all the simulation process of the model.

  • PDF

Kill Probability Analysis Based on the Relation between Final Angle of Attack and Impact Angle of a Guided Anti-tank Missile (대전차유도무기의 종말 받음각 및 입사각의 상관관계에 의한 표적 파괴율 분석)

  • Jeong, Dong-Gil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.520-527
    • /
    • 2010
  • The kill probability of a missile depends on guidance error, warhead performance, and etc. In this paper, we analyzed the kill probability of anti-tank missile in a new approach. Under the condition that the missile hit the target, we studied the effect of angle of attack and impact angle. High impact angle increase the probability that the missile hits the upper armour which is relatively weaker, while high angle of attack at the impact instant decreases the effectiveness of the jet induced by the warhead. We proposed a way to increase the capability of penetration by analyzing the interrelation between impact angle and angle of attack.

An Optimal Missile Allocation Problem for Maximizing Kill Probability (격추확률 최대화를 위한 미사일 최적배치 문제)

  • Jung, Chi-Young;Lee, Jae-Yeong;Lee, Sang-Heon
    • Korean Management Science Review
    • /
    • v.27 no.1
    • /
    • pp.75-90
    • /
    • 2010
  • In this paper, we proposed new solution procedure of the air defense missile allocation problem. In order to find the optimal location of missile, we formulated a simple mathematical model maximizing the kill probability of enemy air threat including aircraft and missile. To find the Kill probability, we developed a new procedure using actual experimental data in the mathematical model. Actual experimental data mean real characteristic factor, which was acquired when the missile had been developed through missile fire experiment. The result of this study can offer practical solution for missile allocation and the methodology in this study can be used to the decision making for the optimal military facility allocation.

A Study on a Method for Computing the Kill/Survival 6Probability of Vulnerable Target (다수 미사일의 공격에 대한 복합취약 표적의 생존확률에 대한 연구)

  • 황흥석
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.2
    • /
    • pp.200-214
    • /
    • 1996
  • In this paper, the problem of determining the probability of kill(or survival) of a vulnerable target by one or more missiles is considered. The general formulas are obtained for the kill or survival probability the target is killed or survival. Several well-known concepts such as those of vulnerability, lethality, multi-component target, and a general combinatorial theorem of probability are introduced and used. For the convenience in this paper, the word missile is used in a very general sense and the target is generally taken to be a point target. And, this paper, is concentrated primarily with the probabilistic aspects of the problem, also a general numerical procedures are also described. Two examples are shown to illustrate the use of some of the formulas in this study, but also illustrate a few points which may not have been sufficiently emphasized. The extension study to complete a software package will be followed.

  • PDF

Characteristics of Kill Probability Distribution of Air Track Within the Engagement Space Using Multivariate Probability Density Function & Bayesian Theorem (다변량 확률밀도함수와 베이지안 정리를 이용한 교전공간내 공중항적의 격추확률 분포 특성)

  • Hong, Dong-Wg;Aye, Sung-Man;Kim, Ju-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.521-528
    • /
    • 2021
  • In order to allocate an appropriate interceptor weapon to an air track for which the threat assessment has been completed, it is necessary to evaluate the suitability of engagement in consideration of the expected point of engagement. In this thesis, a method of calculating the kill probability is proposed according to the position in the engagement space using Bayesian theorem with multivariate attribute information such as relative distance, approach azimuth angle, and altitude of the air track when passing through the engagement space. As a result of the calculation, it was confirmed that the distribution form of the kill probability value for each point in the engagement space follows a multivariate normal distribution based on the optimal predicted intercepting point. It is expected to be applicable to the engagement suitability evaluation of the engagement space.

A Simulation Model for Performance Evaluation of Air Defense-gun System (대공무기체계의 능력평가를 위한 시뮬레이션모델의 연구)

  • 황흥석
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.77-85
    • /
    • 2000
  • The object of this paper is developing of a simulation model for performance evaluation of ai defense-gun system. We developed a three-step kill probability of areal target in case of one gun on one target considering : 1) estimating the target and warhead intercept point, 2) target vulnerability and 3) computing the kill probability. We used a Monte Carlo simulation method. This model can be used for probabilistic analysis giving results of sufficient accuracy with minimum requirement of input data. Also we developed a computer program according proposed algorithm and a set of experimental results using the proposed method are shown.

  • PDF

A Kill-Assessment Technique Using Hypothesis Testing and Kalman Filter (가설 검증과 칼만 필터를 이용한 격추평가 기법 연구)

  • Kim, Ho-Jeong;Lee, Dong-Gwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.5-14
    • /
    • 2006
  • The correct and opportune decision of reengaging the intercepted target is required in order to enhance the engagement performance of the surface to air missile systems that has the ability to defense or attack against various targets at the same time. The engagement efficiency and success of these systems will be largely enhanced by assigning quickly its system resources to the intercepted target and minimizing the waste of system resources for the target which is not able to attack any more. The kill-assessment algorithm has to be able to evaluate automatically whether various targets intercepted by missiles are killed or not on the basis of the reasonable confidence level. The definition of kill assessment is discussed and the kill assessment algorithm is designed reliably by using Kalman filter and a probability theory. Finally its performance is evaluated and analyzed by the Monte Carlo simulation.

A Weapon Effectiveness Evaluation Model for Top-Attack Smart Munitions (상부공격 지능탄 무기효과 평가모델)

  • Kang, Min-Ah
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.458-466
    • /
    • 2012
  • We have developed a weapon effectiveness evaluation model for top-attack smart munitions(WEEM/TASM), which is a many on many Monte Carlo Model evaluating the effectiveness of top-attack smart munitions against armoured ground vehicles. In this model the battle is reduced to a one-sided battle situation in that the target vehicles are regarded as being stationary and passive. It can simulate the whole attack process of smart munitions from firing artillery dispenser to sensing and hitting processes after dispense. It can also calculate the probability of kill of each target and the numbers of rounds required to fulfill the degree of damage in statistical manners. In this paper, we describe the basis for our design concepts reflected in the model to simulate the weapon effectiveness of top-attack smart munitions and provide simulation results for an example case.

An Evaluation Model for Fire Performance (사격효과측정 모델연구)

  • Han, Kyu-Chill
    • Journal of the military operations research society of Korea
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1977
  • This report examines several models, such as random or area bombardment, salvo fire and pattern fire, for the computation of target coverage when multiple rounds are fired at a target. Fractional kill of a fragment sensitive target by a fragmenting projectile as a function of the number of rounds fired is compared for two salvo fire models. The first is a standard salvo fire model in which N rounds are fired at the same aim point, in the second model single kill probability is computed for a fragment sensitive target and then fractional kill from the firing of N rounds is computed according to the assumption that the effects of each round are independent. Because the method of solution becomes very laborious for large patterns, this report gives a method only for the case of evaluating the effectiveness of stick and trianglar pattern fire. The need for the sophisticated and complicated target coverage models is demonstrated by the results of computations performed in this report.

  • PDF